5 # Bipolar Junction Transistors and Field Effect Transistors ### 5.1 Introduction Bipolar junction transistor (BJT) was invented in 1948 by Bardeen and Brattain under the guidance of William Schockley. It is a three terminal doped semiconductor device, which is widely used in electronic circuits (analog and digital both). For example, amplifier, oscillators, switches and logical circuits. There are two types of charged carriers which may involve in the transistor operations, so referred as electrons and holes, that is why this device is known as bipolar junction transistor or BJT. The BJT is analogous to a vacuum triode. The main difference between the two is that the BJT is a current controlled device whereas vacuum triode is a voltage controlled device. BJT has many advantages over the vacuum tube such as smaller in size, light weight, more resistive to shocks and vibrations, quick operation, low operating voltage and long life etc. The BJT has some drawbacks as limited operating frequency (upto few MHz) and has restriction for operating temperature range in comparison to vacuum triode. The Field-Effect-Transistor (FET) is a unipolar transistor which involves single carrier (either electrons or holes) operation. FET uses an electric field to control the flow of charge carriers through a channel in a semiconducting material. FETs are manufactured using a variety of materials such as silicon carbide (SiC), gallium arsenide (GaAS), gallium nitride (GaN). It is a woltage controlled device and hence shows a high degree of isolation between input and output. Main advantage of FET is its high input impedance (of the order of $100 \text{ M}\Omega$). The FET has low gain bandwidth product compare to BJT. It produces less noise and also has better thermal stability than BJT. It consists of two PN-junction diodes, which are cemented back-to-back or front-to-front between two N-type semiconductor sandwitched between two N-type semiconductors. It consists of two PN-junction diodes, which are consistent diodes and the property of two PN-junction diodes are consistent diodes and the property of two PN-junction diodes are consistent diodes are consistent diodes and the property of two PN-junction diodes are consistent other words, it may either have a N-type semiconductor inserted between two N-type semiconductors or a P-type semiconductor inserted between two N-type semiconductors of a P-type semiconductor in Figs. 5.1(a) and (b) respectively. semiconductors or a P-type semiconductor. arrangements are referred as PNP or NPN as shown in Figs. 5.1(a) and (b) respectively. The BJT (PNP or NPN transistor) has three regions – emitter, base and collector and having The BJT (PNP or NPN transistor) has three two junctions i.e., emitter-base and collector-base. Usually emitter has large doping so that it can provide more majority carriers. Base is lightly doped and thin (less majority carriers available). Collector is thick and collects almost all the majority carriers emitted from emitter region. In actual construction, emitter and collector are not symmetrical, thus cannot be interchanged. ### 5.3 BJT Biasing Different modes of transistor operation depend upon the bias condition of each of the t_{W0} junctions, namely, emitter-base and collector-base as listed in Table 5.1. Bias conditions for different modes of transistor operations. | Operation Mode | Emitter-Base
Junction (E-B) | Collector-Base | |--------------------------------|--------------------------------|------------------------------| | Active
Cut-off
aturation | Forward bias
Reverse bias | Junction (C-B) Reverse bias | | to be operated : | Forward bias | Forward bias Forward bias | For transistor to be operated in the active mode E-B junction should be forward biased and C-B junction should be in reverse bias. In amplifiers and oscillator circuits, transistor must operate in active mode, whereas in switching and other logical circuits, transistor must operate in either cut off or in saturation mode. The circuit symbols of PNP and NPN type tranistors are shown in Figs. 5.2(a) and (b) respectively. he arrow in the emitter indicates the direction of Figure 5.2 (a) Circuit symbols of PNP and (b) NPN bipolar transistors. ### Scanned with CamScanner # Construction of Transistor It consists of two PN-junction diodes, which are cemented back-to-back or front-to-front, In other words, it may either have a N-type semiconductor sandwitched between two P-type semiconductors or a P-type semiconductor inserted between two N-type semiconductors. T_{W_0} arrangements are referred as PNP or NPN as shown in Figs. 5.1(a) and (b) respectively. $F_{igure \ 5.1}$ (a) PNP and (b) NPN transistors. The BJT (PNP or NPN transistor) has three regions – emitter, base and collector and having two junctions i.e., emitter-base and collector-base. Usually emitter has large doping so that it can provide more majority carriers. Base is lightly doped and thin (less majority carriers available). Collector is thick and collects almost all the majority carriers emitted from emitter region. In actual construction, emitter and collector are not symmetrical, thus cannot be interchanged. #### 5.3 **BJT Biasing** Different modes of transistor operation depend upon the bias condition of each of the two junctions, namely, emitter-base and collector-base as listed in Table 5.1. Bias conditions for different modes of transistor operations. | the way and | | | | | |-----------------------------|--------------------------------|----------------------------------|--|--| | Operation
Mode
Active | Emitter-Base
Junction (E-B) | Collector-Base
Junction (C-B) | | | | Cut-off | Forward bias | Reverse bias | | | | Saturation | Reverse bias Forward bias | Forward bias | | | | tor to be operated | | Forward bias | | | For transistor to be operated in the active mode E-B junction should be forward biased and C-B junction should be in reverse bias. In amplifiers and oscillator circuits, transistor must operate in active mode, whereas in switching and other logical circuits, transistor must operate in either cut off or in saturation mode. The circuit symbols of PNP and NPN type transistors are shown in Figs. 5.2(a) and (b) respectively. The arrow in the emitter indicates the direction of emitter current. Figure 5.2 (a) Circuit symbols of PNP and # 5.4 Transistor Operation The action of PNP transistor in active mode (normal mode) is explained as follows (Fig. 5.3): Electrons are majority carriers in the p-region and holes are majority carriers in the N-region. The forward bias on emitter-base (E-B) junction forces the holes in the emitter to travel from emitter to base region. Few holes recombine with the electrons present in the base while most of them (\approx 95%) cross the base and enter into the mild doped collector region. This happens because base region is thin and lightly doped. The collector-base junction is reverse biased, therefore negative terminal of the V_{CB} will attract the holes. The current flow in the emitter, base and collector leads, due to carriers Figure 5.3 Biasing for a BJT + and – signs show the holes and electrons as majority carriers in P and N layers respectively. movement, can be explained as follows: total current (I_E) consists of base current (I_B) and collector current (I_C). The number of electrons in base region is very small; hence very few holes will recombine with electrons to constitute base current I_B . The rest of holes cross the base to reach the collector region constitute collector current I_C . Further collector current consists of two components one is due to holes reaching collector region from emitter region after crossing the base region and other is due to reverse saturation current I_{CBO} (contribution of minority carriers). If α is the fraction of emitter current reaching the collector region, then total collector current will be sum of α I_E and reverse saturation current (I_{CBO}). Thus $$I_E = I_C + I_B$$...(5.1) and $$I_C = \alpha I_E + I_{CBO} \qquad ...(5.2)$$ where $I_{CBO} = I_{CO}$ = reverse saturation current flowing through the reverse biased collector-base junction; or collector to base leakage current when emitter is open. From Eq. (5.2), $$I_C = \alpha I_E + I_{CO}$$ $I_C = \alpha (I_C + I_B) + I_{CO}$ [From Eq. (5.1)] or $$(1-\alpha)I_C = \alpha I_B + I_{CO}$$ or or $$I_C = \left(\frac{\alpha}{1-\alpha}\right)I_B + \left(\frac{1}{1-\alpha}\right)I_{CO} \qquad \dots (5.3)$$ We will define another parameter as $$\beta = \frac{\alpha}{1-\alpha}$$...(5.4) We get, $$I_C = \beta I_B + (\beta + 1)I_{CO}$$...(5.5) where α and β are current amplification factors in common base configurations. Usually reverse saturation current is negligible therefore ($I_{CO} \approx 0$). The expression for collector current I_C reduces to, $$I_C = \beta I_B$$ Typical values of α ranging from 0.9 to 0.95 and of β varies from 50 to 150 or more. Equations Typical values of α ranging from 0.9 to 0.95 and of β varies from 50 to 150 or more. Equations Typical values of α ranging from (5.1) – (5.6) are general equations of a transistor for any configuration (PNP or NPN). DC Current Gain $$(\beta_{dc} \text{ or } h_{FE})$$ $$\beta_{dc} = \frac{E_C}{I_B}$$ β_{dc} is defined as ratio of collector current to base current. This parameter is very important for transistor circuit design. Its value is provided by the transistor manufacturer. Usually β_{dc} and β_{ac} remain same. The action of NPN transistor is similar to that of a PNP type except that role of electrons and holes is interchanged. Biasing and current directions in NPN configuration are shown in Fig. 5.4. General transistor equation is, $I_E = I_B + I_C$. ..(5.6) ...(5,7) $\overline{Figure 5.4}$ Biasing and flow of currents in NPN configuration. Relationship between $I_{\it CBO}$ and
$I_{\it CEO}$ Consider Eq. (5.3), $$I_C = \left(\frac{\alpha}{1-\alpha}\right) I_B + \left(\frac{1}{1-\alpha}\right) I_{CBO} \qquad \dots (5.8)$$ If $I_B = 0 \mu A$ and $\alpha = 0.996$ (typical value), then collector current I_C reduces to, $$I_C = \left(\frac{1}{1-\alpha}\right) I_{CBO} = 250 I_{CBO}$$...(5.9) We define a new parameter, I_{CEO} as : $$I_{CEO} = \left(\frac{I_{CBO}}{1 - \alpha}\right)_{I_B = 0 \,\mu\text{A}} = (1 + \beta_{dc})I_{CBO} \qquad ...(5.10)$$ $$I_{CEO} > I_{CBO}$$ where I_{CBO} = collector-to-base reverse saturation current and I_{CEO} = collector-to-emitter current when base is open. Therefore, in a transistor operation I_{CEO} is much greater than I_{CBO} . Example 5.1 In a transistor, emitter current is 3 mA, $\alpha = 0.95$, leakage current $I_{CBO} = 5 \mu A$. Calculate base current and collector current. Solution. Given $I_E = 3 \text{ mA}$, $\alpha = 0.95$, $I_{CBO} = 5 \mu\text{A}$ (i) The collector current $I_C = \alpha I_E + I_{CBO} = 0.95 \times 3 + 0.005 = 2.855 \text{ mA}$ (ii) The base current $$I_E = I_C + I_B$$: $I_B = I_E - I_C = 3 - 2.855 = 0.145 \text{ mA}$. Example 5.2 In common base configuration circuit, collector current is 0.96 mA and base current is 1.16 g and β . 50 MA Calculate \alpha and \beta. Solution. Given $I_C = 0.96 \text{ mA}$, $I_B = 50 \mu\text{A}$ Solution. Given $$I_C = 0.96$$ Hr., $I_B = 0.96$ (i) $\alpha = \frac{I_C}{I_E} = \frac{0.96}{0.96 + 0.05} = 0.95$ (ii) $$\beta = \frac{I_C}{I_B} = \frac{0.96}{0.05} = 19.2$$ (:: $I_{CBO} \approx 0$, neglected) Example 5.3 In CB arrangement, a voltage drop of 5 V is obtained across load $5 k\Omega$, connected in collector circuit. If $\alpha = 0.99$, find the collector and base current. Solution. Given $V_C = 5 \text{ V}$, $R_C = 5 \text{ k}\Omega = 5 \times 10^3 \text{ k}\Omega$. Solution. Given $$V_C = 5$$ V, V_C (i) The collector current $I_C = \frac{V_C (= V_L)}{R_C} = \frac{5}{5 \times 10^3} = 1 \text{ mA}$ (ii) The base current $$\alpha = \frac{I_C}{I_E}$$ \Rightarrow $I_E = \frac{I_C}{\alpha} = \frac{1}{0.99} = 1.01 \text{ mA}$ Base current $$I_B = I_E - I_C = 1.01 - 1 = 0.01 \text{ mA}$$. Example 5.4 Calculate emitter current in a transistor for which β = 40 and I_B = 25 μA . Solution. Given $\beta = 40$ and $I_B = 25 \,\mu\text{A} = 0.025 \,\text{mA}$ Solution. Given $$\beta = 40$$ and $I_B = 20$. Then $$I_C = \beta I_B = 40 \times 25 \times 10^{-3} \text{ mA} = 1 \text{ mA}$$ (Leakage current is neglected) Then $$I_C = \beta I_B - 40.025 = 1.025 \text{ mA}$$ $I_E = I_C + I_B = 1 + 0.025 = 1.025 \text{ mA}$ and, Example 5.5 In a transistor, α =0.99, I_E = 10 mA, I_{CBO} =0.5 μ A. Calculate I_C , I_B , I_{CEO} and β . Solution. Given $\alpha = 0.99$, $I_E = 10 \text{ mA}$, $I_{CBO} = 0.5 \text{ }\mu\text{A}$ Solution. Given $$\alpha = 0.99$$, $I_E = 10 \text{ mA}$, $I_{CBO} = 0.5 \text{ \muA}$ (i) $\beta = \frac{\alpha}{1 - \alpha} = \frac{0.99}{1 - 0.99} = 99$ (ii) $I_C = \alpha I_E + I_{CBO} = 0.99 \times 10 + 0.5 \times 10^{-3} \text{ (mA)} = 9.90 \text{ mA}$. (iii) $$I_E = I_C + I_B$$; $I_B = I_E - I_C = 10 \text{ mA} - 9.90 \text{ mA} = 0.10 \text{ mA}$ (iii) $$I_E = I_C + I_B$$; $I_B - I_E = C$ (iv) $I_{CEO} = \left(\frac{I_{CBO}}{1 - \alpha}\right) = (1 + \beta)I_{CBO} = (1 + 99) \times 0.5 \times 10^{-3} \text{ mA} = 0.05 \text{ mA}$ Example 5.6 In an NPN transistor, $\alpha = 0.995$. $I_E = 10 \, \text{mA}$ $I_{CO} = 0.5 \, \mu\text{A}$. Determine the values of I_C , I_B and I_{CEO} . Solution. Given $\alpha = 0.995$, $I_C = mA$, $I_{CO} = 0.5 \,\mu\text{A} = 0.5 \times 10^{-3} \,\text{mA} = 0.0005$ Solution. Given $$\alpha = 0.995$$, $I_C = \text{IIA}$, I_{CO} (i) $\beta = \frac{\alpha}{1 - \alpha} = \frac{0.995}{1 - 0.995} = 199$ (ii) $I_C = \alpha I_E + I_{CO} = (0.995 \times 10 + 0.0005) \text{ mA} = 9.9505 \text{ mA}$ (iii) $I_C = \alpha I_E + I_{CO} = (0.995 \times 10 + 0.0005) \text{ mA} = 9.9505 \text{ mA}$ (ii) $$I_C = \alpha I_E + I_{CO} = (0.995 \times 10 + 0.0005) \text{ M}^2$$ (1.8) $I_C = [(1 + 199) \times 0.5] \mu A = 100 \mu A$ (ii) $$I_C = \alpha I_E + I_{CO} = (0.995 \times 10 + 0.051 + 0.$$ (iv) $$I_B = I_E - I_C = 10 - 9.9505 = 0.0495 \text{ mA}$$ ## 5.5 Transistor Configurations BJT can be connected in three ways in a circuit as follows: - (i) Common emitter configuration, in which emitter terminal is common between input and output terminals respectively. - (ii) Common base configuration, in which base terminal is common between input (emitter) and output (collector) circuits. - (iii) Common collector configuration, in which collector terminal is common between input (base) and output (emitter) circuits. Usually common terminal is grounded. Figure 5.5 shows the circuit arrangement for normal (active) mode operation of an NPN transistor in all three configurations. Figure 5.5 Different configuration of NPN transistor. ### 5.6 Transistor Characteristics The transistor circuit behaviour and characteristic curves are very different in the three biasing cases *i.e.*, *CB*, *CE* and *CC* configurations. To study the input and output characteristics of the transistor, hybrid model is used in which input current and output voltage are considered as independent variables while input voltage and output current are dependent on them. ### 5.6.1 The Common Base (CB) Configuration Practical circuit for input and output characteristics of an NPN transistor is shown in Fig. 5.6. Figure 5.6 Circuit for NPN transistor characteristics in common-base arrangement. For forward biased base junction, V_{EB} is negative and for reverse biased collector junction, aritive with respect to base which is grounded For rolling with respect to base which is grounded. V_{CB} is kept positive with respect to base which is grounded. $V_{CB} = f / V_{CB}$ $$V_{EB} = f_1(V_{CB}, I_E)$$ Input characteristics. $V_{EB} = f_1(V_{CB}, I_E)$ By keeping collector-base voltage (V_{CB}) constant, variation of emitter-base voltage (V_{EB}) with By Recruit (I_E) gives the input characteristics of the transistor as shown in Fig. 5.7. Figure 5.7 Input characteristics. In the normal operation, the input diode is forward biased. So the input characteristic is similar to forward diode characteristic. Below the cut-in voltage (0.3 or 0.7 V) emitter current is very small. When $V_{CB} = 0$, circuit will represent the forward biased emitter diode when V_{CB} is increased by keeping V_{EB} constant, I_{E} increases. Therefore, curve shifted towards the left. The slope of the curve $\left(\frac{\partial V_E}{\partial I_E}\right)_{V_{CR}}$ provides the input impedance represented by h_{11} or h_{ib} . Output characteristics. $I_C = f_2(V_{CB}, I_F)$ $$I_C = f_2(V_{CB}, I_E)$$ It is obtained by plotting the variation of collector current I_C with collector-base (V_{CB}) voltage by keeping emitter current as constant as shown in Fig. 5.8. Figure 5.8 Output characteristics. From characteristics curve (Fig. 5.8), it is clear that the collector current (I_C) is very small contracteristics curve (Fig. 5.8), it is clear that the collector current (I_C) is very small contracteristics curve (Fig. 5.8), it is clear that the collector current (I_C) is very small contracteristics curve (Fig. 5.8), it is clear that the collector current (I_C) is very small contracteristics curve (Fig. 5.8), it is clear that the collector current (I_C) is very small contracteristics. From characteristics curve (Fig. 5.8), it is clear of the collector junction. Collector C_{CU} when C_{CB} and becomes reverse saturation current C_{CB} horizontal axis. This is due to when $I_E = 0$ and becomes reverse saturation current V_{CB} horizontal axis. This is due to early slightly increases with the V_{CB} and curves are parallel to the V_{CB} horizontal axis. This is due to early slightly increases with the V_{CB} and curves are partially slightly
increases with the V_{CB} and curves are partially slightly increases with the V_{CB} and V_{CB} are partially slightly increases with the V_{CB} and V_{CB} are partially slightly increases with the V_{CB} and V_{CB} are partially slightly increases with the V_{CB} and V_{CB} are partially slightly increases with the V_{CB} and V_{CB} are partially slightly increases with the V_{CB} and V_{CB} are partially slightly increases with the V_{CB} and V_{CB} **effect**. At higher V_{CB} voltage collector collects a left collector voltage is increased, depletion width of the base. As a result, less chance of recombination width of the base. This difference is very small and hence neglected. It is a result, less chance of recombination width increases, this decreases the effective width of the base. As a result, less chance of recombination increases, this decreases the effective width of the base. As a result, less chance of recombination increases, this decreases the effective width of the base. As a result, less chance of recombination increases, this decreases the effective width of the base. increases, this decreases the effective width of the base region. Therefore almost emitter current becomes collector current, $I_C \approx I_E (I_B \approx 0)$. The slope of this curve $\left(\frac{\partial I_C}{\partial V_{CB}}\right)_{I_F}$ provides the admittance denoted by h_{22} or h_{ob} . Further two parameters can also be obtained from transfer characteristics, termed as forward current gain, h_{fb} and reverse voltage gain h_{rb} . The parameters are defined as follows: $$h_{fb} = \left(\frac{\partial I_C}{\partial I_E}\right)_{V_{CB}} \tag{5.11}$$ $$h_{rb} = \left(\frac{\partial V_{EB}}{\partial V_{CB}}\right)_{I_E} \tag{5.12}$$ Typical values of input impedance h_{ib} varying from 15 to 50 Ω , h_{ob} can take value of the order of 5 μ mohs, h_{fb} has value ranging from 0.9 to 0.999 and typical value of h_{rb} is about 10^{-5} . Saturation region in the output characteristic, lies on the left of ordinate $V_{CB} = 0$ and above $I_E = 0$. In this region both emitter and collector junctions are forward biased. If diodes are sufficiently forward biased then I_C changes fast and does not depend on the emitter current. Cut-off region lies on the right of V_{CB} i.e., V_{CB} =0 and below I_E =0, where both emitter and collector junctions are reverse biased. As $I_E = 0$, $I_C = I_{CO}$ i.e., reverse saturation current in the output. This current (I_{CO}) strongly increases with temperature. ### 5.6.2 The Common Emitter (CE) Configuration Practical circuit for CE configuration of an NPN transistor is shown in Fig. 5.9. This configuration is most widely used because of large current, voltage and power gain. BJT is operated in active region. Therefore, base and collector junctions are in forward and reverse bias respectively. Emitter is common in both and grounded. \overline{F} igure 5.9 Circuit for NPN transistor characteristics in common-emitter arrangement. Input characteristics. In this case, base-current (I_B) and output collector-emitter voltage (V_{CE}) are taken as independent parameters and input voltage (V_{BE}) and output current (I_C) as dependent parameters. Thus $$V_{BE} = f_1(I_B, V_{CE})$$ and $I_C = f_2(I_B, V_{CE})$ Figure 5.10 shows the curves between I_3 and V_{BE} for different values of V_{CE} , known as input characteristic curves. At V_{CE} =0 V, emitter-base junction is forward biased, it acts as a forward biased diode. With higher values of V_{CE} , collector collects slightly more electrons due to decrease of effective width of the base, hence base current decreases. Therefore curve shifted towards the right on increasing V_{BE} . Figure 5.10 Input characteristics *Output characteristics.* It is curve between collector current (I_C) and collector-emitter voltage (V_{CE}) for different values of I_B as shown in Fig. 5.11. - (i) Active region. In this case emitter and collector junctions are forward and reverse biased respectively. The region above $I_B = 0$ and between two dotted vertical lines. Here collector gathers almost all electrons, emitted and injected from the emitter. Therefore any change in V_{CL} has no effect on I_C . This region is more sensitive to base current (I_B). For amplifier circuit, transistor must operate in this region. - (ii) **Cut-off region**. This region is defined by $I_B = 0$ and $I_C = I_{CO}$. This bottom curve is called the collector cut-off current. For a given transistor 2 N3904, approximately 50 nA collector cut-off current flows. - (iii) **Saturation region.** Region between ordinate ($V_{CE} = 0$) and first dotted vertical line ($V_{CE} \approx 0.1 \, \text{V}$) is called the *saturation region*. Both the junctions now act as forward biased diode. In this case, I_B is larger than the normal value and current gain β_{dc} is smaller than the normal values. In this region, collector current I_C is almost independent of I_B . - (iv) Breakdown region. This region is dangerous for a transistor. Transistor must not be operated in breakdown region otherwise it may be destroyed. Figure 5.11 Output characteristics. The four transistor parameters can be easily obtained by input and output characteristics in CE configurations. $h_{ie} = \left(\frac{\partial V_{BE}}{\partial I_B}\right)_{V_{CE}}$, slope of input curve. (a) Input impedance, $h_{oe} = \left(\frac{\partial I_C}{\partial V_{CE}}\right)_{I}$, slope of output curve. (b) Output impedance, (c) Forward current gain, $h_{fe} = \left(\frac{\partial l_C}{\partial l_B}\right)_{V=0}$ (d) Reverse voltage gain, $h_{re} = \left(\frac{\partial V_{BE}}{\partial V_{CF}}\right)_{I=1}$ Typical values of h_{ie} , h_{oe} , h_{fe} and h_{re} are $1 \text{k}\Omega$, $10 \,\mu\text{mhos}$, $150 \text{ and } 10^{-5}$ respectively. Example 5.7 A transistor is connected in CE configuration as shown in Fig. 5.12. Use the ideal transistor. Determine (i) V_{BE} (ii) I_{B} (iii) I_{C} (iv) V_{CE} (v) I_{E} . Solution. Given $R_B = 470 \text{ k}\Omega$, $R_C = 3.6 \text{ k}\Omega$, $V_{in} = 15 \text{ V}$, $V_0 = 15 \text{ V}$ and $\beta_{dc} = 100 \text{ M}$ (i) For ideal transistor, $V_{RF} = 0$. (ii) I_R determination. Apply KVL in the input circuit (base circuit) $$V_{in} = I_B R_B + V_{BE}$$ $$I_B = \frac{V_{in}}{R_B} = \frac{15}{470 \times 10^3} \quad (\because V_{BE} = 0 \text{ V})$$ = 31.9 µA Figure 5.12 (iii) $$I_C$$ determination. :: $I_C = \beta I_B$:: $I_C = 100 \times 31.9 \,\mu\text{A} = 3.19 \,\text{mA}$. (iv) V_{CE} determination. Apply KVL in the output circuit i.e., collector circuit. $$V_0 = I_C R_C + V_{CE}$$ $V_{CE} = V_0 - I_C R_C = 15 - (3.19 \times 10^{-3}) \times 3.6 \times 10^3 = 15 - 11.48 = 3.52 \text{ V}$ Usually $I_0 = I_0 I_0$ (v) I_E determination. Usually $I_E \approx I_C$, because I_B is very small. In this case $$I_E = I_C + I_B = 3.19 \text{ mA} + 31.9 \mu\text{A} = 3.22 \text{ mA}$$ Example 5.8 What are I_B , I_C and V_{CE} in Fig. 5.12, if $V_{BE} = 0.7 \text{ V}$? Solution. Given $$V_{BE}=0.7$$ V, $R_{B}=470$ k Ω , $R_{C}=3.6$ k Ω , $V_{in}=V_{0}=15$ V and $\beta_{dc}=100$. (i) KVL in the input circuit, $V_{in} = I_B R_B + V_{BE}$ $$I_B = \frac{V_{in} - V_{BE}}{R_B} = \frac{15 - 0.7}{470 \times 10^3} = 30.4 \,\mu\text{A}$$ (ii) $$I_C = \beta$$. $I_B = 100(30.4 \times 10^{-3})$ mA = 3.04 mA (iii) KVL in the output circuit $$V_0 = I_C R_C + V_{CE}$$ $$V_{CE} = V_0 - I_C R_C = 15 - 3.04 \times 10^{-3} \times 3.6 \times 10^3 = 4.06 \text{ V}$$ Example 5.9 In a CE transistor circuit, collector to emitter (V_{CE}) voltage changes from 5 V to 10 V, causes the change in collector current from 5 mA to 58 mA. Determine the dynamic output resistance. Solution. Dynamic output resistance $$(r_0) = \frac{\Delta V_{CE}}{\Delta I_C} = \frac{10-5}{(5.8-5)\times 10^{-3}}$$ $$= \frac{5}{0.8\times 10^{-3}} = 6.25 \text{ k}\Omega$$ ### 5.6.3 Common Collector (CC) Configurations In this arrangement, collector of the transistor is common in both input and output circuits as shown in Fig. 5.13. Here NPN transistor is considered for determination of transistor charac- teristics. The common collector configuration offers high input impedance and low output impedance and hence it is used for impedance matching applications. Voltage gain offered by this arrangement is less than
unity and current gain is high. Power gain is also very small. Therefore such configuration is rarely used for amplification. Figure 5.13 Circuit for transistor characteristics is CC arrangement. The input and output characteristics are shown in Figs. 5.14 and 5.15 respectively. Figure 5.14 Input characteristics of CE arrangement. Figure 5.15 Output characteristics of CE arrangement. Relationship between current amplification factors, i.e., α , β and γ in three configurations, CB, CE and CC respectively can be obtained as follows: (i) α is defined as ratio of change in collector current (output) to corresponding change in emitter current by keeping output collector current V_{CB} as constant. Therefore $$\alpha = \left(\frac{\partial I_C}{\partial I_E}\right)_{V_{CB}} \tag{5.13}$$ (ii) Similarly, in CE configuration, current gain β_{dc} is defined as $$\beta = \left(\frac{\partial I_C}{\partial I_B}\right)_{V_{CF}} \tag{5.14}$$ (iii) In CC configuration, current gain γ_{dc} is defined as $$\gamma = \left(\frac{\partial I_E}{\partial I_B}\right)_{V_{FC}} \tag{5.15}$$...(5.16) $I_F = I_C + I_B$ In any transistor arrangement and $$I_C = \alpha I_E + I_{CO}$$...(5.17) $\partial I_E = \partial I_C + \partial I_B$...(5.18)From Eq. (5.16), we can write From Eq. (5.17), we can write $$\partial I_C = \alpha \partial I_E + \partial I_{CO}$$...(5.19) On putting ∂I_C in from Eq. (5.19) to Eq. (5.18), we get, $\partial I_E = \alpha (\partial I_E + \partial I_{CO}) + \partial I_B$ Since ∂I_{CO} is almost negligible. Hence $$\partial I_E = \alpha \partial I_E + \partial I_B$$ or $\partial I_E (1 - \alpha) = \partial I_B$...(5.20) By dividing ∂I_C on both sides, we get $$\frac{\partial I_E}{\partial I_C}(1-\alpha) = \frac{\partial I_B}{\partial I_C} \qquad \Rightarrow \qquad \frac{1}{\alpha}(1-\alpha) = \frac{1}{\beta}$$ Therefore $$\beta = \frac{\alpha}{1 - \alpha} \qquad \dots (5.21)$$ or $$\alpha = \frac{\beta}{1+\beta} \qquad ...(5.21)$$ Usually α is less than unity (say 0.98). Then β should be larger i.e., 45. Relationship between α , β and γ Consider $$\gamma = \frac{\partial I_E}{\partial I_B} = \frac{\partial I_E}{\partial I_E - \partial I_C} = \frac{1}{1 - \frac{\partial I_C}{\partial I_E}} = \frac{1}{1 - \alpha}$$ Thus $\gamma = \frac{1}{1 - \alpha} = 1 + \beta$...(5.23) hich shows that current amplification will be large in CE and CC configuration whereas it will be ### Comparison of different Configurations The various characteristics of the CB, CE and CC arrangements are given in Table 5.2. | Table 5.2 The comparison of varie | us characteristics of three connections. | |-----------------------------------|--| |-----------------------------------|--| | S.No. | Characteristic | СВ | CE | СС | |-------|--|---------------------------------|--|-------------------------------| | 1 | Input resistance (h_i) | Low (about 100 Ω) | Moderate
(about 1 kΩ) | Very high (about 750kΩ) | | 2 | Output resistance $(1/h_0)$ | Very high about (0.5 MΩ) | High to moderate (45kΩ) | Low (about 50Ω) | | 3 | Voltage gain (1/h _r) | About 150 | About 500 | Less than unity | | 4 | Current gain (h_f) | Less than unity | High | High | | 5 | Phase change
between input and
output signal voltage | 0 or 2π (No change) | π (phase reversal) | 0 or 2π (No change) | | 6 | Applications | Used in high frequency circuits | Used in audio frequency circuits as an amplifier | Used for impedance matching . | ### 5.7 Transistor as an Amplifier If we compare different type transistors in Table 5.2, we find that CE arrangement is most suited for signal application. Figure 5.16 shows the CE, NPN amplifier circuit. A dc voltage source (V_{BB}) is applied to the input circuit so that emitter-base (E-B) junction operates in the forward bias irrespective of polarity of input ac signal. A dc voltage source (V_{CC}) is connected to the output circuit in such a way that collection-base (C-B) junction operates in reverse biased. Figure 5.16 CE Amplifier circuit. When ac input signal is applied in the input, base-emitter voltage (V_{BE}) begins to oscillate with the polarity of signal. During positive half-cycle, V_{BE} is increased which results I_B increases. This causes an increase in the collector current and larger voltage drop will appear across the load R_C . As V_{CC} is constant, therefore, output voltage V_{CE} (V_C , as E is grounded) decreases. In other words, as the signal voltage is increasing in the positive half of the cycle, the output is increasing in ## 182 • ELECTRONIC DEVICES the negative sense i.e., output is 180° output of phase with the input. While in negative half of the cycle, V_{BE} decreases (i.e., I_{B} decreases) causes smaller voltage drop and current through load R_{C} . This leads to increase in output voltage V_C . In conclusion we can say that in CE amplifier, the positive half-cycle of the signal appears as amplified negative half-cycle in the output and vice-versa. Here amplification is not affected by the phase reversal. In every type of amplifier, the input and output currents are in phase. As shown in Fig. 5.16, collector current consists of two components: - (i) dc collector current I_C (absence of input ac signal) - (ii) ac collector current i_c (presence of input ac signal) Thus resultant collector current $i_C = I_C + i_c$ Table 5.3 provides the standard notations for currents and voltages in transistor operations where ac signals are superimposed over the dc. (Refer to Fig. 5.16) Table 5.3 Standard notations for currents and voltages in a transistor. | S.No. | Particular | dc | ac Instantaneous | Total | |-------|------------------------|----------------|------------------|----------------| | 1 | Emitter-base voltage | V_{EB} | v_{eb} | v_{EB} | | 2 | Base current | I _B | i_b | i _B | | 3 | Collector-base voltage | V_{CB} | v_{cb} | v_{CB} | | 4 | Collector current | I _C | i _c | i _C | #### 5.8 Eber-Moll's Model Eber-Moll model is called the coupled diode model which describes the dc characteristics of a transistor. This model generalizes the behaviour of a transistor by considering the normal and inverted mode of operations. Let us consider the PNP transistor, and current flow through it as given in Fig. 5.17. Figure 5.17 Therefore, During normal operation, V_{EB} is forward and V_{CB} is reverse biased. Therefore, $$I_{EN} = I_{EO}(e^{V_{EB}/V_T} - 1)$$ (diode current equation) ...(5.24) and $I_{CN} = \alpha_N I_{EN} = \alpha_N I_{EO}(e^{V_{EB}/V_T} - 1)$...(5.25) where I_{EO} and α_N are reverse saturation currents at emitter junction and current amplification factor in normal operation respectively. Here I_{EN} and I_{CN} are emitter and collector current respectively in normal mode. Under inverted mode, V_{EB} is reverse and V_{CB} is forward biased. Therefore, $$I_{CI} = -I_{CO}(e^{V_{CB}/V_T} - 1)$$ (diode current equation) ...(5.26) and $$I_{EI} = \alpha_I I_{CI} = -\alpha_I I_{CO} (e^{V_{CB}/k_B T} - 1)$$...(5.27) where I_{CO} and α_I are reverse saturation currents of diode at collector junction and current amplification factor in inverted mode respectively. Here I_{EI} and I_{CI} are emitter and collector current respectively in the inverted operation. Superposition of normal and inverted mode operations provides the generalized emitter current (I_E) and collector current (I_C) , given by : $$I_E = I_{EN} + I_{EI} = I_{EO}(e^{V_{EB}/V_T} - 1) - \alpha_I I_{CO}(e^{V_{CB}/V_T} - 1) \qquad ...(5.28)$$ and $$I_C = I_{CI} + I_{CN} = -I_{CO}(e^{V_{CB}/V_T} - 1) + \alpha_N I_{EO}(e^{V_{EB}/V_T} - 1)$$...(5.29) Equations (5.28) and (5.29) are Eber-Moll equations. I_E contains two terms, first represents the diode equation at emitter junction and second represents a current controlled by collector diode. Similarly, first term of I_C indicates the diode equation at collector junction and second term is for a current controlled by emitter diode. Therefore, equivalent circuit from Eber-Moll equations gives the Eber-Moll model (Fig. 5.18). Figure 5.18 Eber-Moll Model of a PNP transistor. Figure 5.19 Eber-Moll model for normal PNP operation. For a *PNP* transistor in normal mode, common base arrangement, V_{EB} = forward and V_{CB} = reverse biased. Hence, I_{CI} =0 (collector-base diode behaves as open) and I_{EI} =0. Thus Eber-Moll equivalent circuit is shown in Fig. 5.19. This circuit acts as bridge between internal physical device parameter and device terminal characteristics. #### **Bias Stability** 5.9 #### 5.9.1 Need for Biasing In most of the operations, transistor acts as an amplifier, which amplifies the input alternating signal and produces the amplified output. To get the distortion-free output, transistor must be properly biased and it is obtained by the proper selection of supply voltages and resistances in the circuit. This means forward biasing the base-emitter junction and reverse biasing the collector base junction. For distortion-free and linear amplification, the transistor should operate in the active region (i.e., if I_E increases, I_C increases and V_{CE} decreases proportionally). On the other hand, if transistor is not biased properly, it will work inefficiently and unfaithful distorted signal will be produced in the output. An important factor that determines the amplification characteristic of an amplifier is the region of the output characteristic curve over which the transistor operates. This can be obtained by locating the dc operating point on the output characteristic curve as discussed in the next section. #### 5.9.2 dc Load Line Let us consider a CE amplifier circuit with base
resistor R_B and collector (load) resistor R_C as visualised in Fig. 5.20. Figure 5.20 CE, NPN transistor amplifier circuit. In the output circuit, applying Kirchhoff's voltage law (KVL), we get $$\Rightarrow V_{CC} = V_{CE} + I_C R_C$$ $$V_{CE} = V_{CC} - I_C R_C \qquad \text{or} \qquad I_C = \frac{-V_{CE}}{R_C} + \frac{V_{CC}}{R_C} \qquad ...(5.30)$$ As V_{CC} and R_{C} are fixed values i.e., $\frac{V_{CC}}{R_{C}}$ is a constant, therefore above equation is a straight line like y = mx + C, where m = slope of line $= -\frac{1}{R_C}$ and $\frac{V_{CC}}{R_C}$ is the intercept of line on the vertical current axis of the output characteristics. Consider the two extreme points on the straight line. (i) When $$I_C = 0$$, $V_{CE} = V_{CC}$; cut off point A. (ii) When $$V_{CE} = 0$$, $I_C = \frac{V_{CC}}{R_C}$; saturation point R The dc load line is obtained by joining points A and B. The intersection of dc load line and characteristic curve gives the operating point (or quiescent point) as shown in Fig. 5.21. The dc load line gives the dynamic behaviour of the circuit and Q-point provides the value of I_C and V_{CE} of the circuit. When signal is applied to the input, values of I_C and V_{CE} vary about the Q-point accordingly. Q-point is also known as operating point. Figure 5.21 Common-emitter output characteristics and load lines. ### 5.9.3 ac Load Line On applying the ac signal to the input, Q-point remains stable while transistor voltage V_{CE} and collector current I_C vary about the point. If we draw ac load line, it has steep, r (greater slope, $-\frac{1}{R_{ac}}$) slope than the dc load line but two lines will intersect at the *quiescent point* Q. The effective ac load resistance R_{ac} can be obtained as follows (Refer to Fig. 5.22): $$\frac{1}{R_{ac}} = \frac{1}{R_C} + \frac{1}{R_L} = \frac{R_L + R_C}{R_C R_L} \qquad (R_L || R_C)$$...(5.31) $$\therefore \qquad R_{ac} = \frac{R_C R_L}{R_C + R_L} \qquad (\because R_{ac} < R_{dc}) \qquad \dots (5.32)$$ $$R_{dc} = R_C$$...(5.33) • where R_L is effective in case of ac signal and ineffective when dc is applied (no signal). This happens due to coupling capacitor C_0 . It becomes short for ac signal and open for dc. Figure 5.22 CE amplifier circuit To draw ac load line, maximum V_{CE} and maximum I_C is required in presence of ac signal. These values are given below: (cut off point C) $$V_{CE} = V_{CEQ} + I_{CQ} R_{ac}$$ $$I_{C} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}}$$ The ac load line is shown in Fig. 5.21. Example 5.10 In Fig. 5.23, draw dc load line. Solution. To draw dc load line, we will obtain two extreme points from output circuit. (i) KVL in the output circuit: $$V_{CE} = V_{CC} - I_C R_C$$ When $I_C = 0$, $$V_{CE} = V_{CC} = 12.5 \text{ V}$$ (cut off region) .. Point A(12.5,0) on the X-axis. (ii) When $$V_{CE} = 0 \text{ V}$$, $$I_C = \frac{V_{CC}}{R_C} = \frac{12.5}{2.5 \times 10^3} = 5 \text{ mA}$$ (saturation region) \therefore Point B(0 V, 5 mA) lies on Y-axis. On joining these two points, dc load line is obtained as shown in Fig. 5.24. Figure 5.23 Figure 5.24 dc load line **Example 5.11** A NPN transistor is used in Fig. 5.25 from the circuit. Find dc load line and Q-point on the output characteristics of CE configuration. (Si material is used). Figure 5.25 When $I_C = 0$, Solution. To draw dc load line, first find two extreme points from output characteristics. (i) Point A. Apply KVL in the output circuit i.e. $$V_{CC} = I_C R_C + V_{CE}$$ $V_{CE} = V_{CC} = 6 \text{ V.}$ Thus A will be (6 V, 0 mA). (ii) Point B When $$V_{CE} = 0$$, $I_C = \frac{V_{CC}}{R_C} = \frac{6}{1 \times 10^3} = 6 \text{ mA}$ Therefore, B will be (0 V, 6 mA). 50 the straight line AB joining these two points is the dc load line. (iii) To find Q-point I_B is required. Consider input circuit and apply KVL, $$V_{BB} = I_B R_B + V_{BE}$$ $$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{5.7 - 0.7}{125 \times 10^3} = 40 \,\mu\text{A}$$ So Q-point is the point of intersection of the dc load line and output characteristic curve at $I_B = 40 \,\mu\text{A}$. If β would be given, Q-point, I_C and V_{CE} can also be calculated. Figure 5.26 **Example 5.12** Draw the dc and ac load lines for the given CE circuit shown in Fig. 5.27. Also determine Q. Figure 5.27 Solution. (a) Calculation of dc load line (i) At cut-off, $$I_C = 0$$, $V_{CE} = V_{CC} = 20 \text{ V}$ \therefore Point A (20 V, 0 mA) (ii) At saturation, $$V_{CE} = 0$$ $$I_C = \frac{V_{CC}}{R_C + R_E} = \frac{20}{3 \times 10^3 + 2 \times 10^3} = 4 \text{ mA}$$ (because KVL, $V_{CC} = I_C R_C + V_{CE} + I_E R_E$) Point $$B = (0 \text{ V}, 4 \text{ mA})$$ The straight line joining A and B is called the dc load line. #### ELECTRONIC DEVICES 188 (b) Calculation of Q-point Under given condition, we will determine collector current and collector to emitter voltage, i.e., $I_C(Q)$ and $V_{CE}(Q)$. Consider voltage at the base, sider voltage at $$V_B = \left(\frac{V_{CC}}{R_1 + R_2}\right) R_2 = \frac{20 \times 4 \times 10^3}{(16 + 4) \times 10^3} = 4 \text{ V}$$ Apply KVL in loop containing R_2 , base and R_E , i.e., The loop contains $$S = V_{BE} + I_E R_E$$ $$I_E = \frac{V_B - V_{BE}}{R_E} = \frac{4 - 0.7}{2 \times 10^3} = 1.65 \text{ mA}$$ (consider Si transistor, $V_{BE} = 0.7 \text{ V}$) (: $I_B \approx 0 \text{ mA}$) $$I_C = I_E = 1.65 \text{ mA}$$ $I_C(Q) = 1.65 \text{ mA}$ Again apply KVL to output to obtain $V_{CE}(Q)$ i.e., output to obtain $$V_{CE}(Q)$$ i.e., $$V_{CC} = I_C R_C + V_{CE} + I_E R_E = I_C (R_C + R_E) + V_{CE}$$ (Let $I_C \approx I_E$) $$= 1.75 \text{ V}$$ $$V_{CC} = I_C R_C + V_{CE} + I_E R_E - I_C (CC)$$ $$V_{CE}(Q) = V_{CC} - I_C(Q)(R_C + R_E) = 20 - 1.65 \times 10^{-3} (3 + 2) \times 10^3 = 11.75 \text{ V}$$ ## (c) Calculation of ac load line $R_{ac} = R_C || R_L = \frac{R_C R_L}{R_C + R_T} = \frac{(3 \times 12) \times 10^6}{(3 + 12) \times 10^3} = 2.4 \text{ k}\Omega$ Here $$I_C \text{(saturation)} = I_C (Q) + \frac{V_{CE}(Q)}{R_{ac}} = 1.65 + \frac{11.75}{2.4} = 6.55 \text{ mA}$$ (Point D) and $$V_{CE}(\text{cut off}) = V_{CE}(Q) + I_C(Q) R_{ac} = 11.75 + 1.65 \times 2.4 = 15.71 \text{ V}$$ (Point C) Straight line joining points C and D is ac load line. (d) Graphical representation of dc, ac load line with Q-point. 5.9.4 Thermal Runaway The collector current (or current gain, β_{dc}) of a transistor strongly depends on : (i) Transistor (ii) Temperature In a circuit, if transistor is replaced by another, then I_C and V_{CE} also change. Similarly, current I_C (or β_{dc}) varies with the temperature variations. For example, data sheet of a transistor 2N3904 shows that the β_{dc} may vary from 100 to 300 at 25°C temperature. Circuit analysis of β_{dc} increases with increasing temperature and decreases with decreasing However, for faithful amplification of input signal, Q-point must remain fixed, irrespective of these variations. This process is known as stabilization. Thermal runaway is the process in which collector current increases with temperature. As collector current increases, temperature of the junction increases due to power dissipation, I^2R at the collector junction. This increase in temperature ΔT can cause further collector current to increase thereby further increasing temperature. As a result self destruction of the transistor. It can be explained mathematically as follows: Collector current, I_C in a CE configuration is given by $$I_C = \beta I_B + I_{CEO} = \beta I_B + (\beta + 1)I_{CBO}$$...(5.36) where I_{CEO} and I_{CBO} are leakage currents. Since leakage current I_{CBO} is strongly temperature dependent. The collector current I_{C} produces heat, I^2R , within the transistor. This raises the temperature and as a result I_{CBO} increases. From Eq. (5.36), it is obvious that I_C will increase. The increased I_C further increases the temperature, leads to increased I_{CBO} . This process is cumulative and fast and may cause the transistor to be destroyed or damaged. Therefore, in any transistor circuit, this effect should be avoided. ### 5.9.5 Stability Factor In a transistor circuit, it is necessary and desirable to keep I_C and V_{CE} constant so that Q-point (or operating point) becomes stable. There are two methods to make operating point fixed (ii) Compensation as follows: (i) Stabilization In the first case, biasing circuit is used, which allows I_B to vary such that I_C remains constant with the variations in β_{dc} , I_{CO} and V_{BE} . In second case, diodes, sensistors, thermistor etc. (temperature sensitive devices) are used to compensate the variations in voltages and currents to keep operating point (I_{CO}, V_{CEQ}) constant. Performance of different biasing circuits can be compared by a parameter S, known as stability factor. S is defined as the rate of change of collector current with respect to I_{CO} (collector-base leakage) current, keeping β_{dc} and V_{CE} constant. $$S = \left(\frac{\partial I_C}{\partial I_{CO}}\right)_{\beta_{dc} \text{ and } V_{CE}} \approx \frac{\Delta I_C}{\Delta I_{CO}} \qquad ...(5.37)$$ where β_{dc} and V_{CE} are constant. The large value of S means circuit is thermally unstable. Therefore S should be as small as possible. In CE amplifier, collector current is: $$I_C = \beta_{dc} I_B + (1 + \beta_{dc}) I_{CO}$$...(5.38) Differentiating with respect to I_C $$I = \beta_{dc} \frac{\partial I_B}{\partial I_C} + \frac{(1 + \beta_{dc})}{S}$$ $$S = \frac{1 + \beta_{dc}}{1 - \beta_{dc} \left(\frac{\partial I_B}{\partial I_C}\right)} \qquad \dots (5.39)$$ For a circuit in which I_B and I_C are independent i.e., $\frac{\partial I_B}{\partial I_C} = 0$ $$S = 1 + \beta_{dc}$$...(5.40) If β_{dc} = 100 (say) then S = 101, means variation of I_C will be 101 times faster than I_{CO} . Such circuit may operate in the saturation region. Example is fixed bias. ### 5.10 Transistor
Biasing So far, we have discussed the transistor amplifier circuits using two voltage sources, one is connected in the input and other is connected in the output to operate the transistor in the normal mode. To make circuit simpler and economical, only one voltage source can be used. In the following circuits, only one power supply will be used for proper biasing of the transistor: ➤ Base bias or fixed bias ➤ Emitter feedback bias ➤ Collector feedback bias ➤ Voltage divider bias ### 5.10.1 Fixed Bias or Base Bias Figure 5.29 shows the *CE* amplifier using base resistor R_B (several hundred $k\Omega$), connected between base and positive terminal of supply for *NPN* transistor. Apply KVL in the input circuit: $$V_{\rm CC} = I_B R_B + V_{BE}$$ or $$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} \qquad ...(5.41)$$ Now consider stability factor $$S = \frac{1 + \beta_{dc}}{1 - \beta_{dc} \left(\frac{\partial I_B}{\partial I_C}\right)}$$ Since expression for I_B shows that, I_B is independent of I_C . Therefore, $$\frac{\partial l_B}{\partial I_C} = 0$$ and $S = 1 + \beta_{dc}$...(5.43) Figure 5.29 Fixed bias circuit As current gain, β_{dc} is very large, S is also large. So the fixed bias circuit will be highly As currently unstable. That is why this circuit is seldomly used. The most remarkable feature of this thermally unstable. circuit is simplicity. Example 5.13 From Fig. 5.30, determine collector current and collector to emitter voltage. Example Size $$V_{CC} = 6 \text{ V}, R_B = 300 \text{ k}\Omega, R_C = 2 \text{ k}\Omega$$ and $\beta = 50$ (i) Apply KVL in the base circuit i.e., $$V_{CC} = I_B R_B + V_{BE}$$ $$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{6 - 0.7}{300 \times 10^3} = 17.7 \,\mu\text{A}$$ $$I_C = \beta I_B = 50 \times 17.7 = 0.88 \text{ mA}$$ Figure 5.30 Fixed bias circuit (ii) To get collector to emitter voltage apply KVL in the collector circuit (output) $$V_{CC} = I_C R_C + V_{CE}$$ $V_{CE} = V_{CC} - I_C R_C = 6 - 0.88 \times 10^{-3} \times 2 \times 10^3 = 4.24 \text{ V}.$ Example 5.14 Draw the dc load line and locate the operating point Q, for fixed bias circuit shown in Fig. 5.31 What will be stability factor ($V_{BE} = 0.7V$)? Fig. 5.31 What density $$V_{CC} = 15 \text{ V}$$, $R_B = 820 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$ and $\beta = 120$ (i) d.c. load line (a) $$I_C$$ (saturation) = $\frac{V_{CC}}{R_C} = \frac{15}{4.7 \times 10^3} = 3.2 \text{ mA}$ (b) $$V_{CE}$$ (cut off) = V_{CC} = 15 V :. For dc load line two extreme points are (15 V,0 mA) and B(0 V, 3.2 mA). (ii) Operating point (Q) i.e., $I_C(Q)$ and $V_{CE}(Q)$ $$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{15 - 0.7}{820 \times 10^3} = 17.44 \ \mu A$$ and $$V_{CE}(Q) = V_{CC} - I_C R_C = V_{CC} - (\beta. I_\beta) R_C$$ = 15 - 120 × 17.44 × 47 = 5.16 V Thus $$I_C(Q) = \beta I_B = 2.09 \text{ mA}, V_{CE}(Q) = 5.16 \text{ V}$$ (iii) Stability factor $S = \beta + 1 = 121$. Given circuit will be thermally unstable. Figure 5.31 Figure 5.32 ### 5.10.2 Emitter Feedback Bias Figure 5.33 shows the emitter feedback bias circuit. The current in the R_E (feedback resistor) Figure 5.33 shows the emitter recovers of the direction to compensate the changes in V_{BE} . Suppose causes a voltage drop across it which is in the direction to compensate the changes in V_{BE} . Suppose causes a voltage drop across it which is in the difference voltage V_E which in turn decreases the collector current increases, this will increase the emitter voltage V_E which in turn decreases the collector current increases, this will increase the emitter voltage V_E which in turn decreases the collector current increases, this will increase the base-to-emitter voltage, V_{BE} and consequently I_B decreases. Since $I_C = \beta_{dc} I_B$. Therefore, less collector base-to-emitter voltage, V_{BE} and consequently I_B is common in input and output circuit. The base-to-emitter voltage, V_{BE} and consequently I_B is common in input and output circuit. The circuit is current I_C . So I_C remains almost constant. R_E is common in input and output circuit. The circuit is termed as feedback because output current I_C produces a change in input current I_B through R_E . Here $$I_E = I_C + I_B$$ and $$V_{CC} = I_B R_B + V_{BE} + I_E R_E$$ (KVL) ...(5.44) To find stability factor S, $\frac{\partial I_B}{\partial I_C}$ is required. Differentiate current equation with respect to I_C , $$\frac{\partial I_E}{\partial I_C} = 1 + \frac{\partial I_B}{\partial I_C} \qquad ...(5.45)$$ Also differentiate voltage equation with respect to I_C , $$0 = \frac{\partial I_B}{\partial I_C} R_B + \frac{\partial I_E}{\partial I_C} R_E$$ Figure 5.33 Emitter feedback bias circuit, On putting the value of $\frac{\partial I_E}{\partial I_a}$, we get $$\frac{\partial I_B}{\partial I_C} = -\frac{R_E}{R_B + R_E} \qquad ...(5.46)$$ Therefore, $$S = \frac{1 + \beta_{dc}}{1 - \beta_{dc} \left(\frac{\partial I_B}{\partial I_C}\right)} = \frac{1 + \beta_{dc}}{1 + \beta_{dc} \left(\frac{R_E}{R_B + R_E}\right)} << (1 + \beta_{dc}) \qquad ...(5.47)$$ In this arrangement, stability factor S is smaller than that of fixed bias. Hence, thermal stability of operating point will be enhanced. The stability factor (S) can be reduced to 1, when ratio R_B / R_E is very very small compared to 1. Condition for R_E value: Since $I_E \approx I_C$ $$(:: I_B \approx 0)$$ From voltage equation, we can write equation, we can write $$I_{C} (\cong I_{E}) = \frac{V_{CC} - V_{BE}}{R_{E} + \frac{R_{B}}{\beta_{dc}}} \qquad (\therefore I_{B} \approx 0)$$ $$(\therefore I_{C} \approx 0)$$ $$(\therefore I_{C} = \beta_{dc} I_{B}) \qquad ...(5.48)$$ From Eq. (5.48), it is clear that I_C depends upon β_{dc} . Therefore, to keep I_C independent of β_{dc} , R_E should be greater than R_B/β_{dc} i.e., $$R_E \gg \frac{R_B}{\beta_{dc}}$$ $$I_B = \frac{1}{R_B}$$ where $I_E \approx I_C = \beta I_B$, $I_E = (1+\beta)I_B$ $$R_B I_B = V_{CC} - V_{BE} - (1+\beta)I_B$$. R_E $$I_B = \frac{V_{CC} - V_{BE}}{(1+\beta)R_E + R_B}$$ $$= \frac{20 - 0.7}{(1+50) \times 1 \times 10^3 + 430 \times 10^3} = 0.04 \text{ mA}$$ (ii) $$I_C = \beta R_\beta = 50 \times 0.04 = 2 \text{ mA}$$ (iii) V_{CE} : Apply KVL in the output circuit $$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$ $$V_{CE} = V_{CC} - I_C (R_C + R_E)$$ $$= 20 - 2 \times 10^{-3} \times (2 + 1) \times 10^3 = 14 \text{ V}$$ (iv) $$V_E = I_E R_E \cong I_C R_E = 2 \times 10^{-3} \times 1 \times 10^3 = 2 \text{ V}$$ (v) $$V_B = V_{BE} + V_E = 0.7 + 2 = 2.7 \text{ V}$$ (vi) Stability factor $$S = \frac{\partial I_C}{\partial I_{CO}} = \frac{1+\beta}{1+\beta \left(\frac{R_E}{R_E + R_B}\right)} = \frac{1+50}{1+50\left(\frac{1}{1+430}\right)} = 45.7$$ ### 5.10.3 Collector Feedback Bias A common emitter amplifier, in which base resistor is connected to collector terminal is shown in Fig. 5.35. This circuit is called collector feedback because output collector current I_C can cause the changes in base current I_B through feedback resistor R_B . When temperature increases, β_{dc} increases. This generates more collector current. As soon as collector current increases, collector to emitter voltage V_{CE} decreases. It means less voltage drop across R_B , causing less base current and in turn less collector current nullifies the effect of temperature. Figure 5.34 $$I_B + I_C$$ R_B R_C R_B R_C Figure 5.35 Collector feedback bias circuit. Apply KVL in the input circuit, $$V_{CC} = (I_B + I_C)R_C + I_B R_B + V_{BE}$$...(5.49) Differentiate with respect to I_C, $$0 = \left(\frac{\partial I_B}{\partial I_C} + 1\right) R_C + \left(\frac{\partial I_B}{\partial I_C}\right) R_B$$ Therefore, $$\frac{\partial I_B}{\partial I_C} = \frac{-R_C}{R_B + R_C}$$ Stability factor $$S = \frac{1 + \beta_{dc}}{1 - \beta_{dc} \left(\frac{\partial I_B}{\partial I_C}\right)}$$ If we put the value of $\frac{\partial I_B}{\partial I_C}$, then $$S = \frac{1 + \beta_{dc}}{1 + \frac{\beta_{dc} \cdot R_C}{R_R + R_C}} < 1 + \beta_{dc} \qquad \dots (5.50)$$ So this circuit is more stable than fixed bias. Its stability can be improved by proper selection of R_B (small) and R_C (large). This circuit is not good for amplification though simpler and requires only two resistors. Example 5.16 In a collector feedback bias shown in Fig. 5.36, determine (i) position of Q-point and (ii) stability factor S. Solution. Given : V_{CC} =10 V, R_B =100 k Ω , R_C =2 k Ω , β = 50 and V_{BE} =0 V (i) Apply KVL to base emitter circuit, or $$V_{CC} = I'_{C} R_{C} + I_{B} R_{B} + V_{BE}$$ $V_{CC} = (I_{B} + I_{C}) R_{C} + I_{B} R_{B} + V_{BE}$ $$((1+\beta)R_C + R_B)I_B = V_{CC} - V_{BE}$$ $$I_B = \frac{V_{CC}}{R_B + (1+\beta). R_C}$$ $$= \frac{10}{[100 + (1+50) \times 2] \times 10^3} = 49.5 \,\mu\text{A}$$ (ii) $$I_C(Q) = \beta I_B = 50 \times 49.5 \,\mu\text{A} = 2.475 \,\text{mA}$$ Figure 5.36 $(:: V_{RE} = 0 \text{ V})$ (iii) $V_{CE}(Q)$. Apply KVL to collector-emitter circuit, $$V_{CE} = V_{CC} - (I_C + I_B) \cdot R_C$$ = 10 - (2.475 + 0.0495) × 10⁻³ × 2 × 10³ = 4.95 V Therefore Q-point is (4.95 V, 2.475 mA). (iv) Stability factor $$S = \frac{1+\beta}{1+\beta \left(\frac{R_C}{R_C + R_B}\right)} = \frac{1+50}{1+50 \times \left(\frac{2}{2+100}\right)} = 25.75.$$ ### 5.10.4 Voltage Divider Bias or Self Bias The voltage divider bias circuit is shown in Fig. 5.37. This is commonly used for biasing and stabilization of a transistor R_1 and R_2 formed the voltage divider, in which voltage across R_2 provides the forward bias voltage to base-emitter junction. Resistor R_E is used for stabilization. Suppose collector current increases due to change in temperature. This increases the current in R_E which increases the voltage drop across R_E . In this process, V_{BE} decreases, led to decrease in I_B . Consequently I_C reduces and tends to its initial value. From circuit $$V_2 = \left(\frac{V_{CC}}{R_1 + R_2}\right) R_2
= V_{TH}$$...(5.51) $I_{1} = R_{1}$ I_{C} I_{C} R_{C} V_{CE} V_{E} V_{E} R_{E} V_{E} V_{E} Figure 5.37 Voltage divider or self bias circuit. and $$R_B = \left(\frac{R_1 R_2}{R_1 + R_2}\right) = R_{TH} \qquad ...(5.52)$$ This voltage is also known as Thevenin's voltage V_{TH} which can be obtained by applying Thevenin's theorem to the input circuit. Consider loop equation (KVL) around base circuit, $$V_{2} = V_{BE} + I_{E}R_{E} + I_{B}R_{B}$$ $$V_{2} = V_{BE} + (I_{B} + I_{C})R_{E} + I_{B}R_{B}$$...(5.53) or Differentiating with inspect to I_C , we get $$\frac{\partial I_B}{\partial I_C} = -\frac{R_E}{R_E + R_B}$$ $$S = \frac{1 + \beta_{dc}}{1 + \beta_{dc} \left(\frac{R_E}{R_E + R_B}\right)} \qquad ...(5.54)$$ Again we can say that S = 1 if $\frac{R_B}{R_E} \ll 1$. As $\frac{R_B}{R_E}$ increases, S keeps on increasing. When $\frac{R_B}{R_E} \to \infty$, $S \rightarrow 1 + \beta_{dc}$. Here good stability is obtained at the cost of high R_E , less gain and more power dissipation. dissipation. Inspite of all that it is most preferred biasing arrangement. Example 5.17 For Fig. 5.38, determine the operating point using Thevenin's theorem ($V_{BE} = 0.3 \text{ V}$). Also find S of the circuit. Figure 5.38 Thevenin's equivalent circuit. Solution. Given : V_{CC} = 12 V, R_1 = 40 k Ω , R_Z = 5 k Ω , R_C = 5 k Ω , R_E = 1 k Ω and β = 60 Fig. 5.38(b) shows the Thevenin's equivalent circuit of Fig. 5.38(a) where $$V_{TH} = \left(\frac{V_{CC}}{R_1 + R_2}\right) R_2 = \frac{12 \times 5}{(40 + 5)} = 1.3 \text{ V} \quad \text{and} \quad R_{TH} = \frac{R_1 R_2}{R_1 + R_2} = \frac{40 \times 5}{40 + 5} = 4.44 \text{ k}\Omega$$ (i) I_B . Apply KVL to the base-emitter circuit $$V_{TH} = I_B R_{TH} + V_{BE} + I_E R_E$$ $$I_B = \frac{V_{TH} - V_{BE}}{R_{TH} + (1+\beta)R_E} = \frac{1.3 - 0.3}{4.44 + (1+60) \times 1 \times 10^3} = 15.28 \,\mu\text{A}$$ - (ii) $I_C(Q) = \beta I_\beta = 60 \times 15.28 \times 10^{-3} \text{ (mA)} = 0.917 \text{ mA}.$ - (iii) $V_{CE}(Q)$. Apply KVL to collector-emitter circuit $$V_{CE}(Q) = V_{CC} - I_C R_C - I_E R_E = V_{CC} - I_C (R_C + R_E)$$ (: $I_C \approx I_E$) = 12 -0.917 × 10⁻³(5+1) × 10³ = 6.45 V Therefore Q-point is (6.45 V, 0.917 mA) (iv) $$S = \frac{1+\beta}{1+\beta \left(\frac{R_E}{R_E + R_{TH}}\right)} = \frac{1+60}{1+60\left(\frac{1}{1+4.44}\right)} = 5.07$$ (Very stable) #### 5.11 Bias Compensation The different biasing arrangements have been studied in section 5.10. Out of them, potential divider bias provides the best stability of transistor operation. In which negative feedback resistor R_F improves the stability at the cost of reduced gain. This drawback can be further improved by using temperature sensitive devices such as diodes, thermistors or resistors. This is known as bias compensation. (i) Thermistor compensation. In this case, thermistor is used which has negative coefficient of resistance i.e., resistance decreases with temperature. The potential divider bias with a thermistor, R_T is visualised in Fig. 5.39. If temperature increases resistance of thermistor, R_T decreases. As a result current in R_T and R_E (i.e., I_E) increases. More voltage drop across R_E decreases the V_{BE} which in turn decreases the I_B and consequently collector current reduces to maintain its original value. Thus any increase in temperature does not affect the collector current and Q-point remains fixed. Figure 5.39 Thermistor compensation. (ii) Sensistor compensation. Sensistors are resistors with positive coefficient of resistance i.e., their resistance increases with temperature. The sensistor compensation circuit is shown in Fig. 5.40. As temperature increases, R_S increases, causing increase in the resultant resistance $\frac{R_1R_S}{R_1+R_S}$. This decreases the voltage drop across R_2 . So bias voltage at the base decreases and I_C decreases. Therefore increased $I_{\mathbb{C}}$ due to temperature is being compensated by sensistor. Figure 5.40 Sensistor compensation. Figure 5.41 Diode compensation. (iii) Diode compensation. Variations in leakage current I_{CO} with temperature can be compensated by a diode. When temperature increases, reverse saturation current of diode (I_0) and transistor (I_{CO}) increases at the same rate as shown in Fig. 5.41. Thus I_{CO} and I_{CO} whereas input voltage and output current as dependent variables, given as follows: $$v_i = f_1(i_i, v_0)$$ and $i_0 = f_2(i_i, v_0)$ The positive directions of currents and voltages are shown in two-port network as shown in Fig. 5.42. The network equations are: $$v_i = h_i i_i + h_r v_0$$ $$i_0 = h_f i_i + h_0 v_0$$ where h_i, h_r, h_f and h_0 are input impedance, reverse voltage gain, forward current gain and output admittance respectively. These **hybrid** or **h-parameters** can be defined as: Figure 5.42 Two port network. (i) $$h_i = h_{11} = \left(\frac{v_i}{i_i}\right)_{v_0 = 0}$$ (ohms); output short circuited (ii) $$h_r = h_{12} = \left(\frac{v_i}{v_0}\right)_{i_i = 0}$$ (unitless); input open circuited (iii) $$h_f = h_{21} = \left(\frac{i_0}{i_i}\right)_{v_0 = 0}$$ (unitless); output short circuited (iv) $$h_0 = h_{22} = \left(\frac{i_0}{v_0}\right)_{i_i=0}$$ (Siemens or mhos); input open circuited where subscripts i = 11 = input, 0 = 22 = output, f = 21 = forward transfer, r = 12 = reverse transfer. Using above network equations, equivalent model for a transistor can be drawn as in Fig. 5.43. This general hybrid-parameter equivalent circuit contains input and output. In input, an impedance h_i is in series with the voltage source $h_r v_0$ while in output, a current source $h_f i_i$ is in parallel with an admittance h_0 . Figure 5.43 Equivalent circuit for a transistor in hybrid-parameter representation.. # 5.12.1 Analysis of a Transistor Amplifier Circuit using Hybrid h-parameters A transistor amplifier consists of a transistor, load resistor, bias supply and input alternating signal. Its two-port network is shown in Fig. 5.44. Figure 5.44 Basic amplifier circuit Figure 5.45 Hybrid model of amplifier circuit. Its equivalent hybrid model is shown in Fig. 5.45. where $v_i = h_i i_i + h_r v_0$; $i_0 = h_f i_i + h_0 v_0$ (Network equations) (i) Current gain $$(A_i)$$ $A_i = \frac{i_L}{i_i} = \frac{-i_0}{i_i}$ From second network equation $$i_0 = h_f i_i + h_0 i_0 R_L \qquad (\because v_0 = -i_0 R_L)$$ $$\vdots \qquad \qquad \frac{i_0}{i_i} = \frac{h_f}{1 + h_0 \cdot R_L}$$ Therefore $$A_i = -\frac{h_f}{1 + h_0 R_L} \qquad ...(5.55)$$ (ii) Input impedance ($$Z_i$$) $$Z_i = \frac{v_i}{i_i} = \frac{h_i i_i + h_r v_0}{i_i} = h_i + h_r \frac{v_0}{i_i}$$ $$Z_i = h_i - h_r \frac{i_0 R_L}{i_i}$$ $$Z_i = h_i + h_r A_i R_L$$ $$(\because v_0 = -i_0 R_L)$$ $$\therefore A_i = -\frac{i_0}{i_i}$$...(5.56) (iii) Voltage Gain ($$A_v$$) $$A_v = \frac{v_0}{v_i} = \frac{-i_0 R_L}{v_i}$$ $$A_v = \frac{A_i i_i R_L}{v_i}$$ $$A_v = \frac{A_i R_L}{v_i}$$ $$(\because v_0 = -i_0 R_L)$$ $$(\because A_i = \frac{-i_0}{i_i})$$ $$(\because Z_i = \frac{v_i}{i_i})$$...(5.57) # 5.12.2 h-parameters Analysis of a Common-emitter Amplifier Let us consider a CE amplifier circuit as shown in Fig. 5.46. Figure 5.47 Equivalent model for CE amplifier. Figure 5.46 CE, PNP transistor amplifier. The h-model for CE configuration is shown in Fig. 5.47, where dc bias sources have been The h-model for CE configuration of the omitted because h-model is drawn for alternating part only. Capacitor C is also neglected from the omitted because n-model is utawit to the difference of the frequencies where circuit because impedance is assumed to be zero over the given range of frequencies where circuit because impedance is assumed because most of the transistors give very small value amplifier operates. h_{re} is also neglected because most of the transistors give very small value amplifier operates. h_{re} is also neglected because files of the order of 10^{-5} mho. Hence it has very large value of $\frac{1}{h}$ (*100 k Ω). Typically, load has value of 5 k Ω . Therefore, $\frac{1}{h_{re}}$ can be treated as open circuit. After considering the above assumptions, simplified equivalent circuit is shown in Fig. 5.48. From circuit $v_i = h_{ie} \cdot i_b$ and $i_c = h_{f_b} i_b$ or $$h_{fe} = \frac{i_c}{i_b}$$ Thus (i) current gain $$A_{ie} = h_{fe} = \frac{i_c}{i_b}$$...(5.58) *Figure 5.48* Simplified equivalent circuit for *CE* amplifier. (ii) Voltage gain $$A_{ve} = \frac{v_0}{v_{in}}$$ or $$A_{ve} = \frac{-i_c R_L}{h_{ie} i_b} = \frac{-h_{fe} i_b R_L}{h_{ie} i_b} = \frac{-h_{fe}}{h_{ie}} R_L \qquad ...(5.59)$$ (iii) Power gain $A_{pe} = |\text{Current gain}| \times |\text{Voltage gain}|$ $$= \frac{h_{fe}^2}{h_{ie}} R_L \qquad ...(5.60)$$ In common-emitter amplifier, usually h_{fe} is large and h_{ie} is moderate. Therefore, current gain-voltage gain and power gain, all should be high. Example 5.18 Given $h_{ie} = 1k\Omega$, $h_{oe} = 2.5 \times 10^{-5}$, $h_{fe} = 100$, draw the h-parameter equivalent circuit of the amplifier shown in Fig. 5.49. Calculate the input impedance, output impedance, current gain and voltage gain. (b) Hybrid equivalent circuit of CE amplifier Figure 5.49 Solution. Given : $h_{ie}=1\,\mathrm{k}\Omega$, $h_{oe}=2.5\times10^{-5}$, $h_{fe}=100$, $R_1=20\,\mathrm{k}\Omega$, $R_2=10\,\mathrm{k}\Omega$, $R_E=1\,\mathrm{k}\Omega$, $R_C=2\,\mathrm{k}\Omega$, $R_L=2\,\mathrm{k}\Omega$ (i) Input impedance (Z_i) $$(Z_i) = h_{ie} \, ||\, R_1 \, ||\, R_2 = 1 \, ||\, 20 \, ||\, 10 = 0.87 \, \, \mathrm{k}\Omega$$ (ii) Output impedance (Z_0) , $$Z_0 = \frac{1}{h_{ce}} || R_C = 40 \text{ k}\Omega || 2 \text{ k}\Omega = 1.9 \text{ k}\Omega.$$ (iii) Current gain $$(A_i)$$ $$A_i = -\frac{h_{fe}R_BR_C}{(R_C + R_L)(R_B + Z_{in})} = \frac{-100 \times 6.667 \times 2}{(2+2) \times (6.667 + 1)} = -43.5$$ (where $R_B = \frac{R_1R_2}{R_1 + R_2} = 6.67 \text{ k}\Omega$) (iv) Voltage gain $$(A_v)$$ $$A_v =
\frac{-h_{fe}}{h_{ie}} \times R_{ac} = \frac{100}{1} \times 1.0 = -100. \qquad \text{(where } R_{ac} = \frac{R_C \cdot R_L}{R_C + R_L}$$ Example 5.19 A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800 \Omega$, and the Example 5.19 A CE amplifier is arown by a considerable are $h_{ie} = 1 k\Omega$, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$, load impedance is a resistance $R_L = 1 k\Omega$. The h parameters are $h_{ie} = 1 k\Omega$, output resistance Z_0 and voltage load impedance is a resistance $K_L = 1 \text{K} \Sigma Z$. The interpolation output resistance Z_0 and voltage gain A_i , input resistance Z_{in} , output resistance Z_0 and voltage gain A_i . using exact and approximate analysis. Solution. (a) Exact analysis: (i) Current gain $$(A_i)$$ = $\frac{-h_{fe}}{1 + h_{oe}R_L} = \frac{-50}{1 + 25 \times 10^{-6} \times 10^3} = -48.78$ (ii) Input resistance $$(Z_{in}) = h_{ie} - \frac{h_{fe}h_{re}}{h_{oe} + \frac{1}{R_L}} = 1000 - \frac{50 \times 2 \times 10^{-4}}{25 \times 10^{-7} + \frac{1}{1000}} = 990.24 \,\Omega$$ (iii) Voltage gain $$(A_v)$$ = $A_i \frac{R_L}{R_i} = (-48.78) \times \frac{1000}{990.24} = -49.26$ (iv) Output admittance $$(Y_0) = h_{oe} - \frac{h_{fe} h_{re}}{h_{ie} + R_S} = 1.94 \times 10^{-5} \text{ mho}$$ Output resistance $$(R_0) = \frac{1}{Y_0} = 51.42 \text{ k}\Omega$$ (b) Approximate analysis (i) Current gain $$(A_i) = -h_{fe} = -50$$ (i) Current gain $$(A_i) = -h_{fe} = -50$$ (ii) Input resistance $(R_{in}) = Z_{in} = h_{ie} = 1 \text{k}\Omega$ (iii) Output resistance $$R_0 = \infty$$ (iii) Output resistance $$R_0 = \infty$$ (iv) Voltage gain $A_v = \frac{-h_{fe}R_L}{h_{ie}} = \frac{-50 \times 1000}{1000} = -50$ Therefore to save the effort, we can analyze the circuit using approximate analysis method. 5.12.3 Hybrid Model for Common-Base Amplifier *Figure 5.50* Common base amplifier. Figure 5.51 Hybrid equivalent circuit. Network equations are: $$\begin{aligned} \boldsymbol{v}_e &= \boldsymbol{h}_{ib} \boldsymbol{i}_e + \boldsymbol{h}_{rb} \boldsymbol{v}_c \\ \boldsymbol{i}_c &= \boldsymbol{h}_{fb} \boldsymbol{i}_e + \boldsymbol{h}_{ob} \boldsymbol{v}_c \end{aligned}$$ For most of the transistors, $h_{rb} \approx 10^{-4}$ (very small) and $\frac{1}{h_{ob}} \approx 100 \, \mathrm{k}\Omega$, hence $h_{rb} v_c$ (voltage generator) and shunt impedance $\frac{1}{h_{ob}}$ can be omitted. Thus simplified circuit is shown in Fig. 5.52. Network equations become : $$\begin{vmatrix} v_e &= h_{ib}i_e \\ i_c &= h_{fb}i_e \end{vmatrix}$$ (i) Current gain (A_i) $$A_i = \frac{i_c}{i_e}$$ $$A_i = h_{fb}$$...(5.61) Figure 5.52 Simplified h-model. (ii) Voltage gain (A_v) $$A_v = \frac{v_c}{v_e} = \frac{-i_c R_L}{v_e}$$ (: $v_c = v_0 = -i_c R_L$) $$A_v = \frac{-i_e h_{fb} R_L}{h_{ib} i_e}$$ (From network equations) $$A_{v} = \frac{-h_{fb}}{h_{ib}} R_{L}$$...(5.62) where $$\frac{h_{fb}}{h_{ib}} = \frac{i_c / i_e}{v_e / i_e} = \frac{i_c}{v_e} = \frac{i_c}{-v_b} = g_m$$ (: $v_e = v_e b = -v_{be} = -v_b$) g_m = transconductance, which is independent of transistor configuration. (iii) Power gain (A_p) . $$A_p = |A_i| |A_v| = \frac{h_{fb}^2 R_L}{h_{ib}}$$ In common base arrangement $A_i \le 1$. Hence, Power gain $$A_p \approx |A_v| = \frac{h_{fb}}{h_{ib}} R_L$$ $$A_p = g_m R_L \qquad ...(5.63)$$ ### 5.12.4 Hybrid Model for Common Collector Amplifier Common collector amplifier circuit and its hybrid equivalent circuit are shown in Figs. 5.53 and 5.54 respectively. Here biasing has been ignored because in hybrid model it has no meaning. Figure 5.53 Common collector amplifier. Figure 5.54 Hybrid equivalent circuit. Basically CE and CC amplifier circuits are same except the position of load. In CE amplifier, load is connected at the collector while in CC, it is connected to the emitter. To get better understanding of hybrid model in this configuration, Fig. 5.53 can be redrawn as shown in Fig. 5.55. Figure 5.55 Redrawn common collector circuit. *Figure 5.56* Simplified *h*-model. Hybrid equivalent circuit as shown in Fig. 5.54, can be simplified by ignoring $h_{re}v_c$ and $\frac{1}{h_{ce}}$. Reasons are same as mentioned in the previous models. Thus, simplified circuit can be shown in Fig. 5.56. From circuit, $$i_e = -(i_c + i_b) = -(1 + h_{fe})i_b$$...(5.64) $$v_i = h_{ie}i_b + (-i_e)R_L$$ (: $i_c = h_{fe}i_b$) ...(5.65) $$v_0 = -i_e R_L$$...(5.66) (i) Current gain (A_{ic}) $$A_{ic} = \frac{i_e}{i_b} = -(1 + h_{fe}) \approx -h_{fe}$$...(5.67) (ii) Voltage gain (A_{vc}) $$A_{vc} = \frac{v_0}{v_i} = \frac{-i_e R_L}{h_{ie} i_b - i_e R_L} = \frac{R_L}{h_{ie} \left(\frac{i_b}{-i_e}\right) + R_L} \qquad ...(5.68)$$ $$= \frac{R_L}{\left(\frac{h_{ie}}{1 + h_{fe}}\right) + R_L}$$ (from current gain, A_{ic}) $$A_{vc} \cong \frac{R_L}{R_L + \left(\frac{h_{ie}}{h_{fe}}\right)}$$...(5.69) Since $\frac{h_{fe}}{h} = g_m$ = transconductance (true for any transistor configurations) $$A_{vc} = \frac{g_m R_L}{g_m R_L + 1} \le 1$$ (iii) Power gain (A_{pc})(5.70) $$A_{pc} = |A_{vc}| |A_{ic}| = \frac{h_{fe}g_m R_L}{g_m R_L + 1} \qquad ...(5.71)$$ Here current gain is large, voltage gain in less than unity and power gain is also smaller than that of CE amplifier. Therefore it is good for current gain only. Main advantage of CC amplifier is that it has very high input impedance. So, it is used as impedance matching device between a ### 5.12.5 Comparison of CB, CE and CC Transistor Amplifiers Brief comparison among CB, CE and CC transistor amplifier is given in Table 5.4. Comparison of various parameters of the three transistor amplifiers. | S.No. | Parameters | since transistor amplifiers. | | | |-------|------------------|------------------------------|-----------|------| | | | СВ | CE | СС | | 1 | Current gain | ≤ 1 | High | | | 2 | Voltage gain | High | | High | | 3 | Power gain | Moderate | High | ≤ 1 | | 4 | Input impedance | | Very high | Low | | | | Low | Moderate | High | | 5 | Output impedance | Very low | High | Low | ### 5.13 Field Effect Transistor (FET) A field effect transistor is a unipolar device in which current conduction is only by one polarity carrier (i.e., majority carrier) and conduction takes place in a channel of a semiconductor. Flow of current is controlled by electric field. FET can be categorized into two types i.e., (i) Junction The FET has many advantages over BJT, as given below: (i) In BJT output current is controlled by input current. So named as current controlled device. - (i) In BJT output current is controlled device. device, while FET is voltage controlled device. (ii) The input to BJT amplifier involves a reverse biased PN-junction with low - (ii) The input to BJT amplifier involves a reverse biased PN-junction with low resistance, while input to FET involves a reverse biased PN-junction with very high resistance ($\approx 100 \, M\Omega$). - (iii) Thermally stable than BJT. - (iv) Less noise than BJT. - (v) FET can tolerate much level of radiation as it does not depend on minority carriers. The main drawback of FET is relatively small gain bandwidth product. ### 5.13.1 Junction-Field Effect Transistor (JFET) It can be of two kinds: - (i) N-channel. It is made of N-type semiconductor. - (ii) P-channel. It is made of P-type semiconductor. Let us consider a N-channel semiconductor and its electrical equivalent circuit when connected by a voltage source as shown in Fig. 5.57. Figure 5.57 N-type semiconductor with its electrical equivalent circuit. Here current flows from drain (D) to source (S) and majority carrier electrons will flow from S to D. Therefore, the terminal through which majority carriers (electrons in this case) enter the channel is called *source*, termed as S and terminal through which majority carrier leaves the channel is called *drain*, termed as D. If external voltage V_{DS} is increased, drain current, I_D will increase proportionally. To control this current I_D heavily doped P-type semiconductors are formed on both sides of M terms and M. both sides of N-type material. These impure regions are called gates G, usually connected together by the same potential. The gate is given a negative potential with respect to the source so that PN-junctions are reverse biased. The word gate is used because the voltage applied between gate and source, V_{GS} controls the channel width and hence the drain current I_D . The N-channel JFET structure is shown in Fig. 5.58. Figure 5.58 The structure of N-channel JFET. The main operation of JFET depends on the formation of depletion layer at the reverse biased *PN*-junction *i.e.*, between *P*-type gate and *N*-type channel. The width of depletion region distance of that point from the drain. So the points nearer to the channel depends on the the points nearer to the source. Hence near to the drain, width of depletion layer will be larger and source to drain is restricted due to formation of a narrow channel between two depletion source. In extreme case channel may tend towards the closer. This situation is known as *pinch-off*. ### 5.13.2 JFET Characteristics An N-channel JFET with a reverse gate source, $V_{\rm GS}$ is shown in Fig. 5.59. Figure 5.59 Conventional symbols used in JFET. Figure 5.60 Drain characteristics of an N-channel JFET. Drain characteristics of JFET (I_D vs. V_{DS}) are plotted for different values of V_{GS} as shown in Fig. 5.60. - (i) Suppose $V_{GS}=0$ and $V_{DS}=0$, I_D becomes zero. In this case channel will remain open and behaves like simple semiconductor material because of no depletion region in the channel. As V_{DS} increases, I_D increases linearly (region AB). This region, AB is ohmic region with resistance, $\frac{V_{DS}}{I_D}$. It is useful in voltage variable resistor (VVR) or voltage dependent resistor (VDR). - (ii) When V_{DS} reaches point V_P , I_D becomes maximum and beyond that saturation or pinchoff region occurs where I_D becomes almost independent of V_{DS} . The reason for
this is as follows: As V_{DS} increases, the effective cross-sectional area of the channel decreases, resulting in increase in the channel resistance. As a result, I_D maintains a constant value. This is shown by the region BC in Fig. 5.60. occurs producing large I_D . This region is represented by CD, vertical current, k_{Nown} (iv) Drain characteristic curve also shows that for any fixed value of V_{DS} , I_{D} decreases as V_{CS} is made Drain characteristic curve and with decreases as V_{GS} because channel width decreases as V_{GS} is made ### 5.13.3 JFET Parameters Characteristic curve of JFET shows that I_D depends on V_{DS} and V_{GS} . So we can define some parameters relating to these variables as follows: (i) Drain resistance $$(r_d) = \left(\frac{\partial V_{DS}}{\partial I_D}\right)_{V_{GS}}$$; where V_{GS} is constant ...(5.72) It has unit of resistance (Ω or M Ω). (ii) Transconductance $$(g_m) = \left(\frac{\partial I_D}{\partial V_{GS}}\right)_{V_{DS}}$$; where V_{DS} is constant. ...(5.73) It has unit of conductance (mho). (iii) Amplification factor $$(\mu) = -\left(\frac{\partial V_{DS}}{\partial V_{GS}}\right)_{I_D}$$; where I_D is constant ...(5.74) where negative sign indicates that when V_{GS} is increased, V_{DS} should be decreased for a constant I_D . This is a unitless parameter. The relationship among three parameters can be obtained as follows: $$\mu = \left(\frac{\partial V_{DS}}{\partial V_{GS}}\right)_{I_{D}}$$ Multiply and divide R.H.S. by ∂I_D $$\mu = \left(\frac{\partial V_{DS}}{\partial V_{GS}}\right) \times \frac{\partial I_D}{\partial I_D}$$ $$\mu = \left(\frac{\partial V_{DS}}{\partial I_D}\right) \times \left(\frac{\partial I_D}{\partial V_{GS}}\right)$$ $$\mu = r_d \times g_m \qquad ...(5.75)$$ amplification factor = drain resistance × transconductance. Thus ### 5.13.4 Transconductance Curves The transconductance curve of a JFET is a plot of output current, I_D versus input voltage, V_{CS} as shown in Fig. 5.61. Figure 5.61 Transfer curve $(I_D \text{ vs. } V_{GS})$ obtained from the drain characteristics $(I_D \text{ vs. } V_{DS})$. By reading the value of I_D and V_{GS} for a particular value of V_{DS} , the transconductance curve can be drawn. The transconductance curve is a part of parabola. (i) Formula for saturation drain current I_{DS} is obtained from the transconductance curves as shown below : $$I_{DS} = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$$...(5.76) where I_{DS} is the saturation drain current; I_{DSS} is the value of I_{DS} at $V_{CS} = 0 \text{ V}$ V_p is pinch-off voltage = $(V_{GS})_{off}$; V_{GS} is gate to source voltage. (ii) Minimum value of V_{DS} for pinch off to happen at V_{GS} is: $$V_{DS}(\min) = V_{GS} - V_P$$...(5.77) Data sheet provides only I_{DSS} and $V_P = V_{GS(off)}$ value. ### 5.13.5 JFET Applications It has several applications given below: - (i) JFETs are used in cascade amplifiers in test and measuring devices, because of low level noise. - (ii) They can be used in voltage variable resistor (VVR), because of variable resistance in ohmic region. ### 210 . ELECTRONIC DEVICES - (iii) They are used in low frequency amplifiers. (Hearing aid etc.), because of low coupling capacitor. - coupling capacitor. (iv) They can be used in FM, TV receivers and many other communication devices, because of low modulation distortion. - because of low modulates because of high input impedance source and low output impedance load, because of high input impedance and low output impedance. - (vi) They are preferred in computers and other integrated circuits, because of small sizes. - (vii) They can be used in analog switches. - (viii) They have very high power gain. Thus eliminating the requirement of driver stages. Example 5.20 For a N-channel JFET, $I_{DSS} = 8.7 \text{ mA}$, $V_p = -3 \text{ V}$, $V_{GS} = -1 \text{ V}$. Calculate (i) I_{DS} (ii) g_m (iii) g_{m0} . Solution. Given: Drain-source saturation current, I_{DSS} = 8.7 mA = 0.0087 mA, pinch off voltage, V_p = -3 V, Gate-source voltage V_{GS} = -1 V. (i) $$I_{DS} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 0.0087 \left(1 - \frac{1}{3} \right)^2 = 3.8667 \text{ mA}$$ (ii) Transconductance, $$g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_P} \right)$$ where g_{m0} = transconductance at V_{GS} =0, which is defined as : $$g_{m0} = \frac{-2I_{DSS}}{V_p} = \frac{-2 \times 8.7}{-3} = 5.8 \text{ mA/V}$$ Therefore, $g_m = 5.8 \left(1 - \frac{-1}{-3} \right) = 3.867 \text{ mA/V}.$ ### 5.14 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Construction. The structure of N-channel enhancement type is provided in Fig. 5.62(a). Its circuit symbol is shown in Fig. 5.62(b). MOSFETs do not have continuous channel for conduction, which is shown by broken line in the circuit symbol. Figure 5.62 (a) Structure of enhancement MOSFET (b) circuit symbols. A lightly doped P-type semiconductor is taken as a substrate and two highly doped N⁺-type regions are diffused in it. One N^+ -region is source S and other N^+ -region acts as drain D. These regions are separated by a small distance of approximately 1 mm. A thin layer of insulating material (i.e., SiO₂) is then deposited leaving only two holes for connections to the source and the drain. A thin layer of aluminium metal is now deposited over the SiO2. This metallic layer acts as gate. The gate (Al), insulator (SiO₂) and semiconductor channel together form a parallel plate capacitor, which replaces the PN-junction of the JFET. Insulating layer provides very high impedance to the input of the MOSFET. This value is of the order of 10^{10} – 10^{15} ohms. An enhancement type MOSFET is suitable for switching application in digital circuits. ### Operation of MOSFET Suppose $V_{GS} = 0$, a very small drain current will flow due to minority carriers present in the substrate of P-type. When positive voltage is applied at the gate with respect to source i.e., V_{GS} is positive, an electric field is produced through the capacitor that draws minority carriers (electrons) from the substrate towards the region between source and drain forming channel of N-type material. In other words, positive potential at the gate induces opposite charges (electrons) between source and drain which acts as N-channel. Hence this channel is also known as induced channel. As a result conductivity increases and current flows through this channel. Therefore, drain current strongly increases with increase in gate to source (V_{GS}) voltage as shown in Fig. 5.63. Figure 5.63 The drain characteristics of N-channel enhancement type. ### 5.14.2 Depletion Type MOSFET Depletion Type MOSFET The structure of an N-channel depletion type MOSFET is shown in Fig. 5.64(a) and its circuit symbol is shown in Fig. 5.64(b). Figure 5.64 (a) Structure of depletion type MOSFET (b) Circuit symbol operation. When $V_{GS} = 0$, a very small drain current flows due to minority carriers in the P-type substrate. When negative voltage is applied at the gate with respect to source, V_{GS} becomes positive, thus an electric field is produced which is perpendicular to the capacitor. In this process free carriers present in substrate (electrons in this case) are moved away from insulator-channel boundary. This creates a depletion layer at the channel. The width of depletion layer gradually increases from source to the drain because potential of the points near drain will be larger creating larger depletion width. This results in narrower of the channel width and a pinch off situation will arise. In this condition, channel will be wedge shaped as shown in Fig. 5.64(a). The drain characteristics are shown in Fig. 5.65. Figure 5.65 The drain characteristics of N-channel depletion type MOSFET ormulae at a Glance $$5.5 \ \alpha_{de} = \frac{l_c}{l_E}$$ where α_{dc} = current gain in common base configuration. $$5.6 \ \beta_{dc} = \frac{I_C}{I_B}$$ where β_{dc} = current gain in common emitter configuration. 5.7 $$I_C = \beta_{dc} I_B + (\beta_{dc} + 1) I_{CBO} \quad (I_{CBO} \approx I_{CO})$$ 5.8 $$I_C = \beta_{dc} I_P$$ (:: I_{CBO} = negligible) 5.9 $$I_E = (\beta + 1)I_B$$ 5.10 Minimum power rating of a transistor $$P_{\text{max}} = V_{CE} I_C$$ where P_{max} = It is the power which a transistor can withstand. 5.11 $$V_{RE} = 0.7 \text{ V (Si material)}$$ = 0.3 V (Ge material) where V_{BE} = cut-in voltage required to operate the diode in forward bias. 5.12 Fixed bias $$I_B = \frac{V_{CC} - V_{BE}}{R_B}, \qquad I_C = \beta I_B \approx I_E$$ $$S = \beta + 1$$ where S = stability factor of the circuit $$= \left(\frac{\partial I_{C}}{\partial I_{CO}}\right)$$ and $$\beta = h_{fe}$$ = current gain of transistor. 5.13 Emitter feedback bias $$I_B = \frac{V_{CC} - V_{BE}}{R_B + (1+\beta)R_E}$$ $$S = \frac{1+\beta}{1+\beta \left(\frac{R_E}{R_E + R_B}\right)}$$ where V_{CC} = supply voltage V_{BE} = base-to-emitter voltage $R_{\rm B}$ = base resistor $R_E = \text{emitter resistor}$ S = stability factor β = current gain of transistor. 5.14 Collector feedback bias $$S = \frac{1+\beta}{1+\frac{\beta R_C}{R_C + R_B}}$$ 5.15 Voltage divider or self bias $$\begin{split} R_{TH} &= \frac{R_1 R_2}{R_1 + R_2}, \quad V_{TH} = \frac{R_2}{R_1 + R_2} V_{CC} \\ I_B &= \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_E} \\ S &= \frac{1 + \beta}{1 + \beta \left(\frac{R_E}{R_E + R_{TH}}\right)} \end{split}$$ where R_1 and R_2 = potential divider resistances R_{TH} = Thevenin's equivalent resistance V_{TH} = Thevenin's voltage β = Current gain of transistor used. 5.16 Stability factor S is defined as, $$S = \frac{\partial I_C}{\partial I_{CO}}$$ 5.17 $$S = \frac{\partial I_C}{\partial \beta}$$, $S = \frac{\partial I_C}{\partial V_{BE}}$ 5.18 For small signal transistor amplifier (i) $$A_i = \frac{-h_f}{1 + h_0 R_i}$$ (i) $$A_i = \frac{-h_f}{1 + h_c R_c}$$
(ii) $R_i = h_i + h_r A_i R_L$ (iii) $$A_v = \frac{A_i R_L}{R_i}$$ (iv) $$Z_0 = \frac{1}{Y_0}$$ where $Y_0 = h_0 - \frac{h_f h_r}{h_i + R_S}$ A_i = current gain of an amplifier R_i = input impedance of an amplifier $R_L = load resistance$ $R_S =$ source resistance. 5.19 For JFET and depletion type MOSFET Schockley's equation: $$I_{DS} = I_{DSS} \left(1 - \frac{V_{CS}}{V_P} \right)^2$$ where I_{DS} = saturation drain current I_{DSS} = saturation drain current at V_{GS} = 0 V V_{GS} = gate to source voltage V_p = pinch-off voltage. > 5.20 JFET parameters 5.21 Transconductance, Amplification factor (μ) = $-\left(\frac{\partial V_{DS}}{\partial V_{GS}}\right)_{I_D}$ Transconductance $(g_m) = \left(\frac{\partial I_D}{\partial V_{GS}}\right)_{V_{DS}}$ FET parameter (r_t) = $\left(\frac{\partial V_{DS}}{\partial l_D}\right)_{V_{GS}}$ where $g_{mo} = \frac{-2I_{DSS}}{V_P}$ at $V_{CS} = 0$ g_{m0} = transconductance at V_{GS} = 0 V. l_{DSS} = saturation drain current at V_{GS} = 0 V V_P = pinch off voltage. $g_m = g_{mo} \left(1 - \frac{V_{GS}}{V_P} \right)$ ## Miscellaneous Solved Numerical Problems Problem 5.1 In an NPN transistor $I_C = 5 \, \text{mA}$, $I_B = 50 \, \mu A$, $I_{CBO} = 1 \, \mu A$ Determine (i) a (ii) \beta (iii) I_E (iv) ICEO Solution. Given: $I_C = 5 \text{ mA}$, $I_B = 50 \mu \text{A}$ and $I_{CBO} = 1 \mu \text{A}$. (i) $$\alpha = \frac{I_c}{I_E}$$. Thus $\alpha = \frac{5}{5.05} = 0.99$ (ii) $$\beta = \frac{\alpha}{1-\alpha} = \frac{0.99}{1-0.99} = 99$$ (iii) $$l_E = l_B + l_C$$:: $l_E = 0.05 + 5 = 5.05 \,\text{mA}$ (iv) $$l_{CEO} = \left(\frac{1}{1-\alpha}\right) l_{CBO} = (1+\beta) l_{CBO} = (1+99) \times 0.05 \text{ mA} = 5 \text{ mA}.$$ # bipolar junction transistors and field effect transistors ullet 215 **Problem 5.2** Determine the values of $I_{E'}I_{C'}$ of a transistor having $\alpha = 0.98$ and $I_{CBO} = 4 \mu A$. Base current Solution. Given : α = 0.98, I_{CBO} = 4 μ A and I_B = 50 μ A $$I_C = \beta I_B + (1+\beta)I_{CBO}$$ $$I_C = \left(\frac{\alpha}{1-\alpha}\right)I_B + \left(\frac{1}{1-\alpha}\right)I_{CBO} = \left(\frac{0.98}{1-0.98}\right)0.05 + \frac{1\times0.004}{1-0.98} = 2.65 \text{ mA}$$ (ii) $I_E = I_B + I_C = 0.05 + 2.65 = 2.7 \text{ mA}$. **Problem 5.3** In a transistor amplifier as shown in Fig 5.66(a), $R_{\rm C}=8\,{\rm k}\Omega$, $R_{\rm L}=24\,{\rm k}\Omega$ and $V_{\rm CC}=24\,{\rm V}$. Draw the d.c. load line, determine the optimum operating point. Also draw the a.c. load line. Figure 5.66 Solution. Given : $R_C = 8 \text{ k}\Omega$, $R_L = 24 \text{ k}\Omega$ and $V_{CC} = 24 \text{ V}$ (a) (i) $$I_C$$ (saturation), when $V_{CE} = 0$, is given by $$I_C = \frac{V_{CC}}{R_C} = \frac{24}{8 \times 10^3} = 3 \text{ mA}$$ (Point B) - (ii) V_{CE} (cut off), when $I_C = 0$, i.e., $V_{CE} = V_{CC} = 24 \text{ V}$ (Point A) - \therefore dc load line is a line connecting two points A and B on the output characteristic curves. - operating point $I_C(Q)$ and $V_{CE}(Q)$. In this case $I_C(Q) = \frac{I_C}{2} = 1.5$ mA and $V_{CE}(Q) = \frac{24}{2} = 12$ V (b) Optimum operating point. Midway of the load line AB provides the optimum or maximum (c) ac load line. $$I_C$$ (saturation) = $I_C(Q) + \frac{V_{CE}(Q)}{R_{ac}} = 1.5 + \frac{12}{6 \times 10^3} = 3.5 \text{ mA}$ (Point D) and $$V_{CE} \text{ (cut off)} = V_{CE}(Q) + I_C(Q) \times R_{uc}$$ $$= 12 + (1.5) \times 10^{-3} \times 6 \times 10^3 = 21 \text{ V}$$ $$[\because R_{ac} = R_C || R_L = \frac{R_C \cdot R_L}{R_C + R_L} = \frac{8 \times 24}{8 + 24} = 6 \text{ k}\Omega]$$ Solution. Given: $\beta = 100$, $V_{BE} = 0.7 \text{ V}$, $I_C = 1 \text{ mA}$, $V_{CC} = 5 \text{ V}$ 9 + 15 V collector. (i) $$R_C = \frac{V_{CC} - V_C}{I_C} = \frac{15 - 5}{2 \times 10^{-3}} = 5 \text{ k}\Omega$$ (ii) $$V_{BE} = 0.7$$ but $V_B = 0$ (as grounded) Hence $$V_E = -0.7 \text{ V}$$: Voltage drop across $$R_E = -0.7 - (-15) = 14.3 \text{ V}$$ $$R_E = \frac{14.3}{(I_E \approx I_C)} = \frac{14.3}{2 \times 10^{-3}} = 7.15 \text{ k}\Omega$$ Therefore, to design the circuit $$R_L = 5 \,\mathrm{k}\Omega$$ and $R_E = 7.15 \,\mathrm{k}\Omega$ would be used. **Problem 5.10** Determine the I_C and V_{CE} for the voltage divider bias configuration of Fig. 5.69. Solution. Given: $$V_{CC} = -18 \text{ V}$$, $R_1 = 47 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_C = 2.4 \text{ k}\Omega$ and $R_E = 1.1 \text{ k}\Omega$. (i) From Fig. 5.69, $$V_B = \left(\frac{V_{CC}}{R_1 + R_2}\right) R_2 = \frac{-18 \times 10}{47 + 10} = -3.16 \text{ V}.$$ ### onceptual Questions 5.1 Explain why $I_{C\!E\!O}$ is greater than $I_{C\!B\!O}$ in BJT. [GGSIPU, Nov. 2013 (2.5 marks)] Ans. In a BJT, $I_E = I_C + I_B$ $l_C = \alpha l_E + l_{CBO} = \alpha (l_C + l_B) + l_{CBO} = \frac{\alpha l_B}{(1 - \alpha)} + \frac{l_{CBO}}{(1 - \alpha)}$ and When $l_B = 0$, $l_C = l_{CEO}$ Le since $a \le 1 \Rightarrow l_{CEO} >> l_{CBO}$. For example, a = 0.99, $l_{CEO} = 100 l_{CBO}$. $I_{CEO} = \frac{I_{CBO}}{1 - \alpha}$ 5.2 What are α and β ? How they are related to each other ? Ans. α is related to I_C and I_E i.e., $\alpha = \frac{i_C}{I_E}$, β is related to l_B and l_C . This is also known as dc current gain $h_{fc'}$ i.e., $\beta = \frac{l_C}{l_C}$ $$\beta = \frac{\alpha}{1-\alpha}$$ a is usually slightly less than unity. 5.3 Why CE configuration is preferred in amplifier circuits? to CB and CC configurations. Ans. In this arrangement, current gain, voltage gain and power gain are quite high compared 5.4 Why CC arrangement is called a voltage buffer? Does CC circuit same as emitter follower? is why this configuration is placed between a high impedance source and low impedance source load. emitter follower. (Here, A_{ν} < 1). So CC arrangement is called as a voltage buffer. It is also known as impedance matching amplifier or Ans. CC configuration has very high input impedance and very low output impedance. That 5.5 What is early effect or base width modulation? [GGSIPU, Dec. 2013 (5 marks)] and thus effective base width decreases. effect. When collector voltage increases, width of depletion region at output junction diode increases Ans. The modulation of the effective base width by the collector voltage is known as early 5.6 Explain why transistor action cannot be achieved by connecting two diodes back to back. [GGSIPU, Nov. 2013 (5 marks)] junction, are penetrable by both current carriers but in this case of two diodes both current carriers but possible because in transistor the depletion layer formed in Emitter-Base junction and Collector-Base Ans. Transistor action cannot be achieved by connecting two diodes back to back. It is not