Band structure of ar open-circuit $P-N$ junction
consider that a $p-n$ junco is formed le placing p and N-type matiuicals on an atonic seal the energy diagrams of both regions undergo relative shift to make the fermilevel constant throughout the specimen.

Electrons on one side of the junk" would have an avg. energy greater than those on the other side and this causes transfer of election and energy until the fermi level on the two sides equalizes.
Fermi level Af is closer to the Conduction Band edge En in N-type material and Closes to the valance land edge Evp in p-type material. So, the condrection hand
 Expels Exp in p-matuial cannot he at same level as EOn and similarly Eup in p-matereal cannot be at Same level as Evil in n-matuial.

Hence conduction leand edge Exp in p-mativial is higher than Eon in N-material and similarly balance leand edge Arp in "p-matercal is higher-than in Valance brand edge Even in N-material

In fy. E_{1} and E_{2} represents the shifts the fermi. level from the intrinsic condition in P and N material respectively.
Total shift $E_{0}=E_{1}+E_{2}$

$$
\begin{align*}
& E_{F}-E_{V p}=\frac{1}{2} E_{G}-E_{1} \tag{1}\\
& E_{C n}-E_{F}=\frac{1}{2} E_{G}-E_{2}
\end{align*}
$$

adding $e_{q} n$ (2) and (3) $1-$

$$
\begin{align*}
& E_{1}+E_{2}=E_{G}-\left(E_{F}-E_{V p}\right)-\left(E_{C n}-E_{F}\right) \\
& E_{0}=E_{G}-\left(E_{F}-E_{v p}\right)-\left(E_{c n}-E_{F}\right) \tag{4}
\end{align*}
$$

using mass action law:-

$$
\begin{gather*}
n \cdot p=n_{i}^{2}=N_{c} \cdot N_{V} \exp \left\{-E_{G} \mid k T\right\} \\
E_{G}=k T \log \frac{N_{C} N_{C}}{n_{i}^{2}} \tag{5}
\end{gather*}
$$

conc of electron in N ty pe

$$
n_{n}=N_{c} e^{-\left(E_{c}-E_{F}\right) / K T}
$$

is reworttenas

$$
\begin{aligned}
& \text { is reworttenas } \\
& \left.n=E_{C n}-E_{F}\right) / K T \\
& E_{C n}-E_{F}=K T \log \frac{N_{C}}{n_{n}} \\
& =K T \log \frac{N_{C}}{N_{D}}\left(n_{n} \approx N_{D}\right)
\end{aligned}
$$

conc. of holes in $p=t y p x$,

$$
p_{p}=N_{v} e^{\left(E_{V}-E_{F}\right) \mid k T}
$$

or Nee $p_{p}=N_{V} e^{\left(E_{V n}-E_{F}\right) / k T}$

$$
\begin{aligned}
E_{f}-E_{V P}=k T \log \frac{N_{v}}{P_{P}}=K T \log \frac{N_{V}}{N_{A}} \\
\text { (F) }\left(P P \approx N_{A}\right)
\end{aligned}
$$

put eqn (5), (6) and (7) in eq (4) :-

$$
\begin{aligned}
& E_{0}=K T \log \frac{N_{c} N_{V}}{n_{i}^{2}}-K T \log \frac{N_{C}}{N_{D}}-K T \log \frac{N_{V}}{N_{A}} \\
& E_{0}=K T\left[\log \frac{N_{C} N_{D} N_{V} N_{A}}{n_{i}^{2} N_{D} N_{A}}\right] \\
& E_{0}=K T \log \frac{N_{D} N_{A}}{n_{i}{ }^{2}}
\end{aligned}
$$

$E_{0}=$ potential energy of e^{-}at june.
Es depends upon equilibrium concentrations and not upon the charge density in transition region.

DIODE CURRENT EQUATION:
Consider pen juncn diode with switch s open. Let holes and electron densities: $4 i$ P_{p} and n_{p} respectively and in n-region are n_{n} and p_{n} respectively
Density of holes in p-region and density of hole r in n-region are related by Boltzmann consed relation as:- $\quad P_{p}=p_{n} e^{V_{B} / V_{T}}$
where $V_{B}=$ Barrier potential
$V_{T}=$ volt equivalent q temp.

$$
V_{T}=\frac{k^{\prime} T}{e}=\frac{T}{11,600}
$$

for open circuit $p_{v_{0}} / v_{r}$ junco ${ }^{n}, V_{B}=V_{0}$

$$
\begin{equation*}
p_{p}=p_{n} e^{v_{0} / v_{T}} \tag{1}
\end{equation*}
$$

consider that the june ${ }^{n}$ is used in the forward direction by applying a voltage V ie by closing switch s. non, the harrier voltage V_{B} is decreased to V_{0} by an amount $V_{B}=V_{0}-V$ with $F \cdot B$. hole density in p-region remains constant upto depletion region while in n-region just at june, increase from p_{n} to $p_{n}+\Delta p_{n}$ due to diffusion of holes across junco. as the hole diffuse further in n-region they combine with electrons and their density decrease with increase of distance from the gienc?
Hole density is :-

$$
\begin{align*}
& \text { sty is :- } \\
& p_{p}=\left(p_{n}+\Delta p_{n}\right) e^{\left(v_{0}-v\right) / v_{T}} \tag{2}\\
& p_{p}=\left(p_{n}+\Delta p_{n}\right) e^{v_{0} / v_{T}} e^{-v^{\prime} / v_{T}}
\end{align*}
$$

from eq" (1) and (2):-

$$
\begin{align*}
& p_{n} e^{v_{0} / v_{T}}=\left(p_{n}+\Delta p_{n}\right) e^{v_{0} / v_{T}} e^{-v^{\prime} / v_{T}} \\
& p_{n}=\left(p_{n}+\Delta p_{n}\right) e^{-v / v_{T}} \\
& p_{n} e^{v / v_{T}}=p_{n}+\Delta p_{n} \\
& \Delta p_{n}=p_{n}\left(e^{v / v_{T}}-1\right) \tag{3}
\end{align*}
$$

from eq n (1)

$$
\begin{equation*}
p_{n}=p_{p} e^{-V_{0} \mid V_{T}} \tag{4}
\end{equation*}
$$

putting eq (4) in eq n (5):-

$$
\begin{equation*}
\Delta p_{n}=p_{p} e^{-v_{0} \mid v_{T}}\left(e^{v / v_{T}}-1\right) \tag{5}
\end{equation*}
$$

Diffusion of holes Coveitute the hole current The hole current $I_{p} \propto \Delta p_{n}$

$$
\begin{aligned}
& I_{p} \propto p_{p} e^{-v_{0} / v_{T}}\left(e^{v / v_{T}}-1\right) \\
& \text { or } I_{p}=I_{s p}\left(e^{v / v_{T}}-1\right)
\end{aligned}
$$

Where $I_{s p}=$ proportionality constant
similarly expression for electron current due to. diffusion of electrons from N-region to p region

$$
I_{n}=I_{s n}\left(e^{\left.V V / V_{T}-1\right)}\right.
$$

Totat current $I=I_{p}+I_{n}$

$$
I=I_{s p}\left(e^{v / v_{T}}-1\right)+I_{s n}\left(e^{v / v_{T}}-1\right)
$$

$I=I_{0}\left(e^{v / v_{T}}-1\right)$ Diode current equation
$I_{0}=$ saturation current

In general,

$$
I=I_{0}\left(e^{v / n V_{T}}-1\right)
$$

$\eta=$ Constant, depends upon the property of material

$$
\begin{aligned}
& \eta=1(\text { for Ge }) \\
& \eta=2(\text { for si })
\end{aligned}
$$

for forward bias; $I_{f}=I_{0} e v / n \mathrm{~V}$
for revers luis; $I_{r}^{f}=I_{0}\left(e^{-v / n v \pi}-1\right)$
Reverse lias voltage is large as compared to V_{T}

$$
\xrightarrow[\therefore I_{r}=-I_{0}]{e^{-V / n V_{T}}} 0
$$

REVERSE SATURATION CURRENT
Minority carriers consitule a small current called reverse current or reverse saturation current (I_{s} or I_{0}) which is extremely temp dependent.
$\underset{\text { FUNCTION BREAKDOWN }}{ } \rightarrow$
The breakdown voltage VBR or jun c ${ }^{n}$ breakdown is defined as the reverse voltage at which $p-n$ jinn n^{n} lereaks down with sudden rise in reverse current. It depends upon the width of depletion layer (iv. doping level)

* Two types of fund breakdown are :-

1. Fever Breakdown:- It takes place in junc"s which are heavily doped. When lereakdonen voltage is applied a very strong electric field appears across narrow depletion lacer which lereaks the bands. Now electron hole pairs are generated. A small further
increase in reverse voltage produce large no: of current carriers which suddenly increases the reverse current 2. Avalanche Breakdown

Minority carriers under R-B. seas condn's flowing through the finn accquires the K.E. Which increases with increase in Reverse Voltage. At a sufficiently high reverse voltage, $K \cdot E$ of minority carriers becomes so large that they knock out electrons from the covalent bonds of semiconductor material. As a result of collision the Plibereatid electron uiturn liberate more electrons and the current leceomes very large leading to breakdown of the crystal structure its ely This is called avalanche lereakdown

V-I characteristics of Pen jun

FORWARD CHARACTERISTICS
With the forward lias to the $p-n$ junc" very little current called the forward current; flows until the forward voltage exceeds the junction barrier potential $(0.3 \mathrm{~V}$ for $G C$ and 0.7 V for si$)$. The characturstice follow an exponential law.
As the forward. Voltage is increased to the knee of char. barrier potential is reduced to zero, beyond the knee Of the Char. the potential barrier is completely eliminated forward current increases almost linearly with increase

If forward Voltage is nicreased beyond certain Value, extremely large current will flow and $p-n$ june" may get
destroyed the due to overheating
REVERSE CHARACTERISTIC
In this case juncn resistance is wry high, no current flows through the circuit. A smble current of the order of u A flows in the circuit due to minority carriers. This is known as reverse current. If reverse voltage is increased the K.E. of electron becomes high that they knock out electron from the simicondertor atoms and breakdown of june occurs and there is sudden mise of reverse current.
$\xrightarrow[*]{\text { IMPORTANT TERMS USED IN PAN JUNCTION }}$ *

1. Breakdown voltage:- vendace oooseree it is defined as the reverse voltage at which the p^{-n} gin" breakdone with sudden rise in reverse current.
2. Knee voltage:- the forward voltage at which the current through the jun stands hicreasing rapidly is called the ARne voltage or the cut in voltage.
3. Max. forward current :- It is the highest instantaneous forevard current that a p^{-n} june can conduct without damage to the finn. In. case the forward. current exceeds this rating, the juncn will get distroyed due to overheating.
4. Peak Inverse voltage:- max reverse voltage that can we applied to the $p-n$ guin without damage to the jung?

IDEAL DIODE
Ileal diode is a tho terminal device that permits only unidirectional conduction. It conducts well in forward direction and poor in the reverse diction.

* Ideal diocle is acted as a perfect conductor (with zero resistance or zero voltage drop across it) when F.B.
* and act as a perfect insulator (with an infinite resistance) or no current through it when R.B.
 (FAB.)

(c.) Switching Analogy

EFFECT ON DIN JUNCTION DIODE DUE TO TEMP.
Diode current eq ${ }^{n}$ is

$$
I=I_{0}\left(e^{V / \eta V_{T}}-1\right)
$$

At room temp. about $222^{\circ} \mathrm{C}, T=295^{\circ} \mathrm{K}$

$$
v_{T}=0.625 \mathrm{~V}
$$

Thus,

$$
\begin{aligned}
& I=I_{0}\left(e^{40 v}-1\right)(\text { for } G e) \\
& I=I_{0}\left(e^{20 V}-1\right)\left(\text { for } e^{\circ}\right)
\end{aligned}
$$

where I_{0} is reverse saturation current at room: temp. Io is -temp. dependent. It ii creases 7\% per oc for beth Ge $\& \mathrm{si}^{\circ}$.

Ge is more temp dependent than silicon liecause its reverse saturation current is approx 1000 times larger.

* The reverse saturation current I_{0} nil justabout double in magnitude for eure $10^{\circ} \mathrm{C}$ increase in temp:
* For Ge or Si, $\frac{d v}{d T}=-2.5 \mathrm{mv} /{ }^{\circ} \mathrm{C}$

The dependence of I_{0} on temp. T

$$
I_{0}=k T^{m} e^{-V G O / n V_{T}}
$$

\qquad
$K=$ constant, $C V_{G O}=$ forbidden energy band
For $\mathrm{Si} ; \eta=2, m=1.5, V G_{0}=1.21 \mathrm{~V}$
for Ge; $\eta=1, m=2, V_{G 0}=0.785 \mathrm{~V}$
Taking \log on both sides in (1):-

$$
\frac{d\left(\log _{e} I_{0}\right)}{d T}=\frac{1}{I_{0}} \frac{d I_{0}}{d T}=\frac{m}{T}+\frac{V_{G}}{\eta T V_{T}}
$$

* for a fixed lues of forward Voltage, forward current hicreases with the increase in temp.

DIODE RESISTANCE

Forward Resistance t- the resistance offered by the diode in the circuit when FB. is known as forivard Resistance: forward resistance is of two types-
(i) DC or static Resistance:-

Resistance offered by a diode to direct current is $D C$ resistance. It is ratio of $d c$ voltage across the diode to the direct current flowing through it.
At. point P, the static resistance is $:$

$$
R=\frac{O A}{O B}=\frac{V}{I}
$$

* It is simply the reuprocal of slope of line joining opereating pt to origion.
* It is not constant lent depends on the operating pt on $V-I$ char. of the diode.
(ii) AC or Dynamic Resistance

It is resistance offered by diode to the changing forward current. It is also defined as reciprocal of slope of forward char of diode.

$$
r_{a c}=\frac{d v}{d t}=\frac{\eta v_{T}}{I_{0} e^{V / \eta} v_{T}} \approx \frac{\eta V_{T}}{I}
$$

from forward char. :-

$$
\begin{aligned}
& \text { from forward char. :- } \\
& \text { Ac or dynamic resistance }=r=\frac{\text { small change in forward }}{\text { voltage }} \\
& \text { Small change in forward } \\
& \text { current. }
\end{aligned}
$$

Ques. Find the dynamic resistance of a $p-n$ fine ${ }^{n}$ diode at a forward current of $2 m A$. Assume $\frac{K^{\prime} T}{e}=25 \mathrm{mV}$

Sol:-

$$
\text { forward current } \begin{aligned}
I & =2 \mathrm{~mA} \\
& =0.002 \mathrm{~A}
\end{aligned}
$$

Volt equivalent of $V_{T}=\frac{K^{\prime} T}{e}-25 \mathrm{mV}=0.025 \mathrm{~V}$ dynamic resistance $=r=\frac{\eta v_{T}}{I}$

$$
\eta=1
$$

$$
r=\frac{0.025}{0.002}=12.552
$$

Ques. Determine AC resistance for a germanium diode hawing a F.B. voltage of 200 mV and reverse saturation current of 1 UA at room temp.

$$
\begin{aligned}
& V_{T}=26 m v=0.026 \mathrm{~V} \\
& v=200 \mathrm{mV}=0.2 \mathrm{~V} \\
& I_{0}=1 \mu \mathrm{~A}=1 \times 10^{-6} \mathrm{~A} \\
& r=\frac{\eta V_{T}}{I_{0} e^{v} / \eta V_{T}}=\frac{0.026}{1 \times 10^{-6} \times e^{0.2 / 0.026}}=11.86 \Omega
\end{aligned}
$$

Ques. Determine $D C$ resistances level for the diode in following fig at (i) $I_{D}=2 \mathrm{~mA}$ (ii) $I_{D}=20 \mathrm{~mA}$ (iii) $V_{D}=-10 \mathrm{~V}$
(i) when

$$
\begin{aligned}
& I_{D}=2 \mathrm{~mA}, V_{D}=0.5 \\
& R_{1}=\frac{V_{D}}{I_{D}}=\frac{0.5}{2 \times 10^{-3}} \\
& 20 \mathrm{~mA}, V_{D}=0.8 \mathrm{~V} \\
& R_{2}=\frac{0.8}{0.02}=40 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& I_{D}=2 m A, V_{D}=0 \\
& R_{1}=\frac{V_{D}}{I_{D}}=\frac{0.5}{2 \times 10^{-3}}=250 \Omega 2
\end{aligned}
$$

(ii) $I_{D}=20 \mathrm{~mA}, V_{D}=0.8 \mathrm{~V}$
(III)

$$
\begin{aligned}
& V_{D}=-10 \mathrm{~V} \\
& I_{D}=-1 \mathrm{UA} \\
& R_{3}=\frac{-10}{-1 \times 10^{-6}}=10 \mathrm{~m} \Omega
\end{aligned}
$$

TRANSITION AND DIFFUSION CAPACITANCES
In a $p-n$ semiconductor diode, there are two capacitive effects. Both types of capaictances are present in F.B. and R.B. regions, but one so outneught the other in each region that we consider the effect of only one in each region in R.B. region ne have the transition or depletion region capacitance (C_{T}) while in F. B. region ne l have Glue diffusion of storage capacitance C_{D}).
TRANSITION (OR-SPACE CHARGE) CAPACITANCE
When a $p-n$ june ${ }^{n}$ is reverse leased, the depletion region acts like an insulator or dielectric material while the p - is n-type regions on either side have a low resistance and acts as the plates. Thus p-n fine" may lu e considered as llel plate capacitor. The jun' capacitance is termed as transition or space charge capacitance.
C_{T} may be defined as:-

$$
C_{T}=\left|\frac{d Q}{d V}\right|
$$

Where $d Q$ is the increase in charge due to increase in voltage, $d V$

1. Step graded june"

A func" is said to be step graded if there is an abrupt change from acceptor ion conc on the p-side to done ion conc: on the N-side.
Such a junk" is formed in alloyed giunc" or fused june" diode.

$$
C_{T}=\frac{\varepsilon_{A}}{\omega}
$$

where $\varepsilon=$ absolute permitinity of medium
$W=$ width of depletion layer
$A=$ area of cress-section of junk"

$$
\begin{aligned}
& \omega^{2}=\left[\frac{2 \varepsilon V_{B}}{e}\right]\left[\frac{1}{N_{A}}+\frac{1}{N_{D}}\right] \\
& \omega=\sqrt{\frac{2 \varepsilon V_{B}}{e N_{D}} \quad \text { when } N_{A} \gg N_{D}}
\end{aligned}
$$

So,

$$
\begin{aligned}
G_{T} & =\varepsilon A \sqrt{\frac{e N_{D}}{2 \varepsilon V_{B}}} \\
& =A \sqrt{\frac{N_{D}}{V_{B}}} \cdot \sqrt{\frac{\sigma \varepsilon}{2}}
\end{aligned}
$$

C_{T} is inversely proportional to $\sqrt{V_{B}}$

$$
\begin{aligned}
& V_{B}=V_{0}-V_{R} \\
& V_{R}=\text { reverse lias voltage } \\
& V_{0}=\text { contact potential. }
\end{aligned}
$$

2. Linearly graded jun ${ }^{n}$ (or Grown june n)

A jinan is said to he linearly graded if the charge densities varies gradually with the distance in tue transition region. Such a june "gets formed in a grovel gun" rode.
In this case also, $C T=\frac{\varepsilon A}{\omega}$
$\xrightarrow{\text { Diffusion (or storage) Capacitance) }}$
When a $p-n$ fin n is $F B$. holes from p-side enter into n-region and e-from n-side enter into p-side Carrie diffuse away from june" and progressinely recombine. Density of carriers is high near the june" and decays exponentially with distance Thus, a charge is stored on both side of the juncn when FB. Voltage is applied. It is observed that amount of stored charge varies with the applied potential as for a true capacitor. Capacitance due to this change is called diffusion or storage capacitance

$$
C_{D}=\frac{\text { Change in no. of minority }}{\text { Change in Meltage across }} \underset{d v}{d v}
$$

If τ is the mean lifetime

$$
\begin{aligned}
& I=\frac{\theta}{\tau} \text { or } \theta=\tau I \\
& I=I_{0}\left(e^{v / n v_{T}}-1\right) \\
& \theta=\tau I_{0}\left(e^{v / n v_{T}}-1\right)=\tau I_{0} e^{v / n v_{T}}\left(\because e^{v / n v_{T}}>1\right)
\end{aligned}
$$

So, $C_{D}=\frac{d \theta}{d V}$

$$
\begin{aligned}
&=\frac{d \theta}{d V} \\
&=\frac{d\left(\tau I_{0} e^{\left.v / n V_{T}\right)}\right.}{d V}=\frac{\tau I_{0}}{\eta V_{T}} e^{v / n V_{T}} \\
&=\frac{\tau\left(I+I_{0}\right)}{\eta V_{T}}
\end{aligned}
$$

So, fer a F.B greater than few tenths of a volt,

$$
\begin{aligned}
& {\left[\frac{V}{\eta V_{T}}\right] \gg 1 ;\left(I \gg I_{0}\right)} \\
& \text { so, } C_{D}=\frac{\tau I}{\eta V_{T}} \quad C_{D} \propto I \text { (forward current) }
\end{aligned}
$$

P-N jive diode switching characterstics
When the applied lias voltage is changed from forward to reverse or ice versa, the current takes definite time to reach a steady state value.
Recovery Lime:- When the applied lias voltage to the
$\therefore P-n$ diode is suddenly reversed in the opp. clisection The diode response reaches a steady stater after an internal of time, called recovery time
Forward Recovery Time when a diode is switched from reverse lias cond" to FB. cold". It takes time fr, called forward Reconcy time
Diode Reverse Recovery Time:- when a diode carrying a current in forward direction is suddenly reversed biased, the diode current will not immediately fall to its steady state lucause the minority carrier distribution has to change to steady state situation (pi gd.) from situation (fig.1). Diode nell continue for a tine called reverse recovery time (Er) unill excess of minority carrier density $\left(p_{n}-p_{n O}\right)$ or (np-npo) has dropped normally to zero.

p-type

Switching char:-
Fig. shows the various events occurring in sequence on reverse leasing a conducting diode.
\rightarrow Let us consider in time $t_{\text {, }}$ the i/p voltage v_{i} is applied to a diode resistance cruet of fig.(a) is reverse abruptly. Upto time the diode is condrecting in the forward direction and Voltage $v_{f}=V_{F}$
\rightarrow For large value of R_{L}, the voltage drop across R_{L} is large in comparision to voltage drop across diode and current flowing through R_{L} is $i \approx \frac{V_{F}}{R_{L}}=-T_{R}$ cintil $t=t_{2}$
\rightarrow At $t=t_{2}$, the injected minority carries density at $x=0$ has reached the equilibrium state as shonen in fig.(C)
\rightarrow At t_{1}, the diode voltage falls slightly normally by Rd $\left(I_{F}+I_{R}\right)$ but doesnot reversed. At time $t-t_{2}$, the process of sweeping of the excess minority carriers in the hicintio of june leach has completed So, diode current magnitude lugins to reduce.
\rightarrow During t_{1} to t_{2}, the stored minority charge has remained shored and have this internal called as storage time denoted by t_{5}. (ii fig.(e))
\rightarrow Mow the magnitude of diode current current bequis to decrease exponentially to the oboes normal steady state reverse saturation current value. The time internal u p w t t_{2} and the instant t_{3} when diode has recovered nominally, is callet/leansition time t_{t}.

R ECTIEIERS

Rectifier is adenice which converts the sinusoidal ac voligge into either +ve or -ve pulsating dc. P-n, june" diode which conducts when F.B. and practically does not conduct when R.B., can be used for rectification $i \cdot e$ for conversion of ac into dc.
Rectifiers may le either hop wave or full wave (centre tap
or leridge) type. or leridge) type.

HALF -WALE RECTFIERS
In hay weave rectifier, the rectifier conducts current only diving the tue half chile of input ac supply. In half. heave rectification only one diode is used during hay cycle of the input ac supply the diode conducts and during the half of cycle of input ac, to diode is $R \cdot B$ and doesnot conducts. So, output is obtained only ding +ie half cycle of the input.

INPUT, VOLTAGE, WAVEPOM

RECTIFIED OUTPUT VOLTAGE CURRENT WAVEFORMS

Working:-
(i) AC Voltage to be rectified is applied to primary of a transformer
(ii) The AC stepped to a suitable low value, so that the diode may not le spoiled
(iii) During the half cycle of input ac voltage the diodes gits F.B. and hence it conducts current s luring no half cycle of input ac voltage the diode gits $R_{i} B$. and doesnot conduct any current
(iv) The current flows through the load resistance R_{L} only during the the half cycle so, current through R_{L} is obtained in one direction ie only half cycle of input ac are used:

Analysis of Half. Wave Rectifier

1. Peak Inverse Voltage:- It is the max voltage that the rectifying diode has to nithstand when it is $R \cdot B$.
For a half-neave rectifier
PIN $=V_{\text {max }} \quad\left(V_{\text {max }}=\right.$ peak value of the secondary voltage)
2. Peak Current:-

Instantaneous Value of the voltage applied to the rectifier is given as:-
$v_{s}=v_{s \max } \sin \omega t\left(\begin{array}{c}\text { neglecting the diode cut in voltage } \\ \left.V_{k}\right)\end{array}\right.$
If diode is assumed to have F.B. resistance of R_{F} ohms and reverse resistance of infinity.

$$
\left.\begin{array}{l}
i=I_{\text {max }} \sin \omega t, 0 \leq \omega t \leq \pi \\
i=0, \pi \leq \omega t \leq 2 \pi
\end{array}\right\}
$$

where peak value of current flowing through the diode is $I_{\text {max }}=\frac{V_{\text {max }}}{R_{f}+R_{L}}$
3. $D C$ output Current:

$$
\begin{align*}
I_{d c} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} i d(\omega t) \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} I_{\max } \sin \omega t d(\omega t)+\int_{\pi}^{2 \pi} 0 d(\omega t)\right] \\
& =\frac{1}{2 \pi} I_{\max }\{-\cos \omega t\}_{0} \pi \\
& =\frac{I_{\text {max }}}{\pi}=0.318 I_{\max } \tag{4}
\end{align*}
$$

using eqn (3) and (4)

$$
\begin{equation*}
I_{d c}=\frac{V_{\text {max }}}{\pi\left(R_{L}+R_{F}\right)}=\frac{V_{\text {max }}}{\pi R_{L}}\left(\text { if } R_{L} \gg R_{F}\right) \tag{5}
\end{equation*}
$$

4. DC output Voltage :-

$$
\begin{align*}
V_{d c} & =\frac{I_{d c} R_{L}}{} \\
& =\frac{V_{s \text { max }}}{\pi\left(R_{L}+R_{F}\right)} \cdot R_{L}=\frac{V_{\text {max }}}{\pi\left(1+\frac{R_{F}}{R_{L}}\right)} \tag{1+6}
\end{align*}
$$

if $R_{L} \gg R_{F}$

$$
\begin{equation*}
V_{d c}=\frac{V_{\text {smax }}}{\pi} \tag{7}
\end{equation*}
$$

5. RMS value of current:-

$$
\begin{align*}
I_{\text {rms }}^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} i^{2} d(\omega t) \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} I_{\max }^{2} \sin ^{2} \omega t d(\omega t)+\int_{\pi}^{2 \pi} d(\omega t)\right] \\
I_{\text {rms }}^{2} & =\frac{I_{\text {max }}^{2}}{4} \\
I_{\text {rms }} & =\frac{I_{\text {max }}}{2} \text { (8) } \tag{8}
\end{align*}
$$

$I_{\text {rms }}=\frac{V_{\text {max }}}{2\left(R_{F}+R_{F}\right)}$
(9) $\{$ from (3) $\}$
6. RMS value of output Voltage.:-

$$
\begin{aligned}
V_{L \text { rms }} & =\text { Isms }^{R_{L}} \\
& =\frac{V_{S \text { max }} x R_{L}}{2\left(R_{F}+R_{L}\right)} \\
& =\frac{V_{S \text { max }}}{2\left[1+\frac{R_{F}}{R_{L}}\right]}
\end{aligned}
$$

If $R_{L} \gg R_{F}$,

$$
V_{\text {LRMS }}=\frac{V_{\text {smax }}}{2}
$$

7. Form factor and peak factor:-

* Form factor is defined as the ratio of rems value to the avereage value

$$
K_{f}=\frac{R M s \text { value }}{\text { Avg. value }}=\frac{I_{\text {rms }}}{I_{\text {dc }}}=\frac{V_{\text {max }}}{2\left(R_{f}+R_{L}\right)} \times \frac{\pi\left(R_{L}+R_{f}\right)}{V_{\text {smax }}}
$$

$$
K_{f}=\frac{\pi}{2}=1.57
$$

* Peak factor is defined as the ratio of peak Value to the rms Value

$$
k_{p}=\frac{\text { Peak value }}{\text { RMs Value }}=2
$$

8. Output Frequency:- Output freq. is same as the input freq. fort $=$ fin.
9. Rectification Efficiency It is defined as the ratio of dc output power to the ac input power.

$$
\begin{gathered}
\eta=\frac{D C \text { power delincued to the load }}{A c \text { i/p power from the transformer }} \\
\eta=\frac{P d c}{P_{a c}} \\
P_{d c}=I^{2} d c R_{L}=\left(\frac{I_{\text {max }}}{\pi}\right)^{2} R_{L}
\end{gathered}
$$

$P_{a c}=$ Power dissipated in + pourer dissipated in load $^{\text {resistance } R}$ diode june resistance R_{L}

$$
\begin{aligned}
& =I^{2} \text { ans } R_{F}+I_{\text {rams }}^{2} R_{L} \\
& =\left(\frac{I_{\text {max }}}{2}\right)^{2} R_{F}+\left(\frac{I_{\text {max }}}{2}\right)^{2} R_{L}=\frac{I_{\text {max }}^{2}}{4}\left(R_{F}+R_{L}\right)
\end{aligned}
$$

$$
\eta=\frac{P_{d c}}{P_{a c}}=\frac{4}{\pi^{2}} \frac{R_{L}}{R_{F}+R_{L}}=\frac{0.406}{1+\frac{R_{F}}{R_{L}}}
$$

If R_{F} is neglected
$\eta=0.406$ or 40.6% (max. possible η of a rectifier)
10. Ripple factor:- The pulsating output of a rectifier can be considered to contain a dc component and ac component called ripples.
Ripple factor is defined as the ratio of effective value of of the ac components of voltage (or current) present in the output from the rectifier to the direct or avg-value of the op voltage (or current)

$$
\begin{gathered}
\text { ripple factor } \left.=\gamma=\frac{I_{a c}}{I_{d c}}=\sqrt{\left[\frac{I_{\text {sims }}}{I_{d c}}\right.}\right]^{2}-1 \\
\gamma=\sqrt{K_{f^{2}-1}} \quad(k f=1.57) \\
\gamma=\sqrt{(1.57)^{2}-1} \\
\gamma=1.21
\end{gathered}
$$

11. Transformer Utilization factor (TUF): It is defined as the ratio of power delivered to the load and ac rating of the transformer secondary,

$$
\begin{aligned}
T U F=\frac{P_{d c}}{P_{\text {ac }}(\text { rated })} & =\frac{I^{2} d c R_{L}}{V_{\text {sims }} I_{\text {Rms }}} \\
& =\frac{\left.\sum_{\text {max }} / \pi\right)^{2} R_{L}}{\frac{V_{\text {max }}}{\sqrt{2}} \cdot \frac{I_{\text {max }}}{2}} \\
& =\frac{2 \sqrt{2}}{\pi^{2}} \frac{I_{\text {max }} R_{L}}{V_{\text {max }}} \\
V_{\text {Smax }}= & I_{\text {max }}\left(R_{F}+R_{L}\right) \\
\text { SO, TUG } & =\frac{2 \sqrt{2}}{\pi^{2}} \cdot \frac{I_{\text {max }} R_{L}}{I_{\text {max }}\left(R_{F}+R_{F}\right)} \\
& =\frac{0 \cdot 286 R_{L}}{R_{L}+R_{F}}
\end{aligned}
$$

Neglecting R_{L}, TUE $=0.286$
12. Regulation:- The variation of dc opp voltage as a func" of do load current is called regulation.
$\%$ Regulation is given as:-

$$
\begin{aligned}
& \text { Regulation is given as:- } \\
& \% \text { Regulation }=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100=\frac{\frac{V_{\text {max }}}{\pi}-I_{d c} R_{f}}{I d c R_{F}} \times 100
\end{aligned}
$$

13. Cond" for Max. DC output power in a flalf-wane Rectifier:-

$$
P_{d c}=I^{2} d c R_{L}=\left(\frac{I_{\max }}{\pi}\right)^{2} R_{L}=\frac{V_{s}^{2} \max R_{L}}{\pi^{2}\left(R_{I}+R_{f}\right)^{2}}
$$

diff. above eqn w.r't. R_{L}

$$
\begin{aligned}
& \text { diff. above eq n wo }{ }^{n} t \cdot R_{L} \\
& \frac{d P_{d c}}{d R_{L}}=\frac{V_{s \max }^{2}}{\pi^{2}}\left[\frac{\left.R_{L}^{2}+R_{F}{ }^{2}+2 R_{L} R_{F}\right)-R_{L}\left(2 R_{L}+R_{F}\right)}{\left(R_{L}{ }^{2}+R_{F^{2}}+2 R_{L} R_{F}\right)}\right]
\end{aligned}
$$

$$
\frac{d P_{d c}}{d R_{L}}=\frac{V_{s}^{2} \max \left(R_{F}^{2}-R_{L}^{2}\right)}{\pi^{2}\left(R_{L}^{2}+R_{F}^{2}+2 R_{F} R_{L}\right)^{2}}
$$

Output will be max. if, $\frac{d P_{d c}}{d R_{L}}=0$
or $R_{F}{ }^{2}-R_{L}{ }^{2}=0$
or $R_{L}=R_{F}$
\rightarrow Advantages of Half -Wave Rectifier:-

* Simple circuit
* Lon cost
\rightarrow Disadvantages of Half-Wave Rectifies:-
* TUF is lon
* power θ / p and therefore rectification η is quite low. This is due to the fact that power is delivered only half the time. * Ripple factor is high.

Ques 1. A sinusoidal voltage of 40 V and freq. 50 HJ is applied to a half wave rectifier.

$$
R_{L}=200 \mathrm{~s} 2, V_{\gamma}=0, R_{F}=20 \mathrm{~s} 2, R_{r}=\infty
$$

Find $V_{d c}, I_{d c}, I_{m a x}, I_{r m s}, P_{d c}, \eta$, ripplefactor, $\%$ regulation
Solution:-

$$
\begin{aligned}
& I_{\text {max }}=\frac{V_{s \text { max }}}{R_{L}+R_{F}}=\frac{40 \sqrt{2}}{200+20}=0.257 \mathrm{~A} \text { or } 257 \mathrm{~mA} \\
& I_{\text {rms }}=\frac{I_{\text {max }}}{2}=128.5 \mathrm{~mA} \\
& I_{d c}=\frac{I_{\text {max }}}{\pi}=\frac{257}{\pi}=81.8 \mathrm{~mA} \\
& V_{d c}=I_{d c} R_{L}=81.8 \times 10^{-3} \times 200=16.36 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& P_{d c}=I^{2} d c R_{L}=\left(81.8 \times 10^{-3}\right)^{2} \times 200 \\
& =1.338 \mathrm{w} \\
& P_{a C}=\frac{I^{2} \max }{4}\left(R_{F}+R_{L}\right)=\frac{\left(257 \times 10^{-3}\right)^{2}}{4} \times(20+200) \\
& =3.63 \mathrm{~N} \\
& \eta=\frac{P d c}{P_{a c}} \times 100=\frac{1.338}{3.63} \times 100=36.86 \% \\
& \text { Ripple factor, } \gamma=\left(\frac{I^{2} r m s}{I^{2} d c}-1\right)^{1 / 2} \\
& =\left(\left(\frac{128.5}{81.8}\right)^{2}-1\right)^{1 / 2}=1.21 \\
& V_{d C}=\frac{V_{\text {max }}}{\pi}-I_{d c} R_{F}=\frac{40 \sqrt{2}}{\pi}-81.8 \times 10^{-3} \times 20 \\
& =16.364 \mathrm{~V} \\
& \text { Regulation }=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100=\frac{V_{\text {max }}}{\pi}-I_{d c R_{F}}^{I d c R_{F}} \\
& =\frac{18-1.636}{1.636} \times 100 \\
& =9.998 \%
\end{aligned}
$$

Ques. A half wave Rectifier uses a diode with $R_{F}=100 \Omega$ If the input ac voltage is 220 V and load resistance is $2 k \Omega$, determine the TUF:

Solution:-

$$
\begin{aligned}
\text { TUF }=\frac{0.286}{1+\frac{R_{F}}{R_{L}}} & =\frac{0.286}{1+\frac{0.1 \mathrm{KS}}{2 \mathrm{KS}}} \\
& =0.2724 \text { Ans. }
\end{aligned}
$$

FULL- WAVE RECTIFIERS
\qquad
CENTRE - TAP FULL-WAVE RECTIFIER

\qquad wo \rightarrow

In a fuel-wave rectifier two clioder are used. For the half cycle of input voltage one diode supplies Current and for -ve half cycle another diode supplies current. In this p-side of the two diodes is connected to the two ends q the secondary of transformer and n-sides are connected together and output is taken from the common point of the diodes and the mid point of the secondary of the transformer. So, in a full wail rectifice the secondary of transformer is provided with centre tapping so, it is called center tap transformer.

WORKING:-
(i) During the half cycle the end A of the secondary becomes the this makes diode $D, F \cdot B$, So D, conducts.
(ii) During the half cycle the end B of the secondary becomes +ie, so the diode D_{2} leccomer F.B. and Conducts current
(III) In both the cases the current flows in the load resistance if the same direction. The op is taken left the common terminals of the diodes and the centre tap of the transformer
(iv) The current flows in the same direction in the load resistance thus ne get output voltage during both the as well as -v ehalf cycle of input ac but in the same direction.

Peak Inverse Voltage:-
PIV of diode $D_{2}=V_{s \text { max }}+V_{\text {max }}=2 V_{s \text { max }}$ (sum of veltage across the lower half of transformer secondary and voltage across R_{L})
also $P_{I V}$ of diode $D_{1}=2 V_{s m a x}$.
BRIDGE RECTIFIER
In bridge rectifier circuit four diodes are connected in the form of a neneatstone leridge, two diametrically opposite juinc's of the bridge are connected to the secondary of a transformer and the other two are connected to the load.
(i) During the the half cycle of input supply. dion de D_{1} and D_{3} are FB and current flows through the arm AB, enters the load at + ie terminal, leaves the load at ne tuminal and returns leack flowing to arm $D C$. During this period D_{2} and D_{4} are R.B. (ied and current don't flow in arm $A D$ and $B C$.
(ii) During the Ind hay of the input cycle, diodes D_{2} and D_{4} are F.B. and Curkent flows-lhrough arm $C B$, enter the
load at the terminal, leaves the load at -re terminal and returns leach flowing through arm ∂A. (flow of current is shown by dotted lines)
\rightarrow Peak inverse voltage (PIV)

$$
p_{I} V v_{\text {smax }} .
$$

Circuit Analysis:-
th The analysis of both of the fill -wave rectifier circuits (v.e. centre -tap and bridge type.) is same except that:-
1.) In a bridge rectifier circuit two diodes conduct diving each half cycle and forward resistance lecomes double ie. $2 R_{f}$
2.) In a bridge rectifies circuit $V_{\text {max }}$ is the max.voctage across the transformer secondary winding whereas in centre tap recifier circuit Vsmax represents the max. voltage across each half of the secondary minding.
(I) Peak Current:-

$$
v_{s}=V_{s \max } \sin \omega t
$$

If the diode is assumed to have a forward resistance of R_{F} ohms and reverse resistance equal to infinity, then current flowing through the load resistance is
$i_{1}=I_{\max }$ snit $i_{2}=0$; for st half cycle and $i_{1}=0$ and $i_{2}=I_{\max } \sin \omega t$; for 2 nd half cycle .

Total current, $i=i_{1}+i_{2}=I_{\text {max }} \sin \omega t$ (for the whole cycle
$I_{\max }=\frac{V_{\text {max }}}{R_{F}+R_{L}}$ (in case of centre -tap rectifier)
and $I_{\text {max }}=\frac{V_{s \max }}{2 R_{F}+R_{L}}$ (in case of bridge rectifier)
(II) Output current :-

So, $I_{d c}=\frac{1}{\pi} \int_{0}^{\pi} i, d(\omega t)=\frac{1}{\pi} \int_{0}^{\pi} I_{\max } \operatorname{sen} \omega t d(\omega t)$

$$
=\frac{2 I_{\max }}{\pi}
$$

(Ids is equal to arg. value of alternating current, can the obtained by integrating the current $i, 1$ pew 0 and π or current i_{2} bp π and 2π)
(III) $D c$ Output Voltage:-

$$
\begin{aligned}
V d c & =I_{d c} R_{L} \\
& =\frac{2}{\pi} I_{\max } R_{L}
\end{aligned}
$$

(IV) RMS value of current:-

$$
\begin{aligned}
I_{\text {ins }}^{2} & =\frac{1}{\pi} \int_{0}^{\pi} i_{1}^{2} d(\omega t) \\
& =\frac{1}{\pi} \int_{0}^{\pi} I_{\max }^{2} \sin 2 \omega t d(\omega t) \\
& =\frac{I_{\text {max }}^{2}}{2} \\
I_{\text {rms }} & =\left.\frac{I_{\text {max }}}{\sqrt{2}}\right|^{2}
\end{aligned}
$$

(v) RMS value of output voltage:-

$$
V_{L \text { rms }}=I_{\text {rms }} R_{L}=\frac{I_{\text {max }}}{\sqrt{2}} R_{L}
$$

(VI) Form factor and Peak factor:-

* form factor $=\frac{\text { Rms value }}{\text { Avg. value }}=\frac{I_{\text {rms }}}{I_{d c}}=\frac{I_{\max } / \sqrt{2}}{2 I_{\max } / \pi}$

$$
=\frac{\pi}{2 \sqrt{2}}=1.11
$$

* Peak factor $k_{p}=\frac{\text { Peale value }}{R M S \text { value }}=\frac{I_{\text {max }}}{I_{\max } / \sqrt{2}}=\sqrt{2}$
(VII) Output freq:-
for fuel wave rectifier, foul $=2$ fin.
(VIII) Rectification Efficiency:-

Power delivered to load,

$$
P_{d c}=I^{2} d c R_{L}=\left(\frac{2}{\pi} I_{\text {max }}\right)^{2} R_{L}=\frac{4}{\pi^{2}} I_{\text {max }}^{2} R_{L}
$$

Ae input power,

$$
P_{a c}=I_{\text {rams }}^{2}\left(R_{L}+R_{F}\right)=\frac{I_{\text {max }}^{2}}{2}\left(R_{L}+R_{F}\right)
$$

Rectification efficiency, $\eta=\frac{P d c}{P a c}$

$$
\begin{aligned}
\eta=\frac{\frac{4}{\pi^{2}} I_{\max }^{2} R_{L}}{\frac{1}{2} I_{\max }^{2}\left(R_{L}+R_{F}\right)} & =\frac{8}{\pi^{2}} \frac{1}{\left(1+\frac{R_{F}}{R_{L}}\right)} \\
& =\frac{0.812}{1+\frac{R_{F}}{R_{L}}}
\end{aligned}
$$

In case of bridge rectifier, rectification η is

$$
\eta=\frac{0.812}{1+\frac{2 R_{F}}{R_{L}}}
$$

(IX) Ripple factor:
$k_{f}=1.11$ for full Wave rectifier
So, Ripple factor, $\gamma=\sqrt{k_{f}^{2}-1}=\sqrt{(1.11)^{2}-1}=0.482$
(x) Regulation:-:

$$
\begin{aligned}
V_{d c}=\frac{2}{\pi} I_{\max } R_{L} & =\frac{2 V_{S \max } R_{L}}{\pi\left(R_{F}+R_{L}\right)} \\
& =\frac{2 V_{s \max }}{\pi}\left[1-\frac{R_{F}}{R_{F}+R_{L}}\right] \\
& =\frac{2 V_{S \text { max }}}{\pi}-I_{d c} R_{F}
\end{aligned}
$$

In case of a bridge rectifier;

$$
V_{d C}=\frac{2 V_{s \text { max }}}{\pi}-2 I_{d c} R_{F}
$$

(xI) Transformer Utilization factor for centre-tap Transformer :-
The any. TUF is found by considering the primary and secondary windings.

$$
\begin{aligned}
\text { TUF of primary } & =\frac{P d c}{V_{A} \text { rating of primary }} \\
& =\frac{I^{2} d c R_{L}}{V_{s} r_{m s} I_{m s}}=\frac{\left(\frac{2 I_{\max }}{\pi}\right)^{2} R_{L}}{\frac{V_{s} \max }{\sqrt{2}} \times \frac{I_{\max }}{\sqrt{2}}} \\
& =\frac{b}{\pi^{2}} \times \frac{R_{L}}{\left(R_{F}+R_{L}\right)}=\frac{8}{\pi^{2}} \times \frac{1}{\left(1+\frac{R_{F}}{R_{L}}\right)} \\
& \simeq 0.812
\end{aligned}
$$

centre tap transformer Can be thought of as equinalent to two haff-wave rectifiers feuding to a common load Hence TUF of two half secondaries can be written as

$$
\begin{aligned}
\text { TUF (fum secondary) } & =2 \times \text { TUF (hay-wave) } \\
& =2 \times 0.286=0.572
\end{aligned}
$$

$$
\begin{aligned}
\text { The avg. TUF } & =\frac{T U F(\text { primary })+T U F(\text { (secondary) }}{2} \\
& =\frac{0.812+0.572}{2}=0.692
\end{aligned}
$$

(XII) TUF for Bridge Rectifier:-

The current flow through both primary s secondary heindings are sinusoidal. Do Due to this both the primary s seiedeng secondary are 0.812

$$
\therefore \text { TUF (avg) }=0.812
$$

Merits ss Demerits of Ful-Doive Rectifiers Over: Hay-Wane Rectifiers

Merits:- 1. The rectification efficiency of fue-wave rectifier is double of that of a half heave rectifier.
2. The ripple voltage is low and of higher freq in case of a file -wave rectifier, 80 simple filtering cir ant is required
3. Higher op voltage, higher of power and higher TUF in case of a fue-ware rectifies
Demerits:- Full wan rectifier circuit needs more circuit elements and is costlier.

DIODE SUPPERS
A circuit with whieh-lue Wanform is shaped ely removing a portion of the applied wane to suit a particular device is called a clipping circuit or clipper. For a clipping circuit a diode and a resistor are required. Sometimes a dc battery is also used to fix the cupping level.
Clippers are used in digital devices, electronic devices, RADAR etc.
Important clipping circuits or clippers are:-

* positive clipper
* negation clipper
* leiased clipper
* Combination clipper.

Positive Clipper
A positive clipper is one which removes (or chips off) the tire half cycles of the input voltage.

(a) Input Voltage

(b) Circuit ding.

(c) Output Voltage.

* During the half cycle of input ac signal, the diode is FB . and conducts heavily. Therefore diode acts as short circuit and voltage across it is zero. Hence voltage across R_{L} is zero i-e. Of p voltage during the half cycle is zero.
* During re half cycle the diode M R.B. and behaves as an open circuit. In this case the che. behaves as potential divider with of p V_{0} is

$$
N_{0}=\frac{R_{L}}{R_{1}+R_{L}} v_{i}
$$

Generally $R_{L} \gg R \Rightarrow V_{D}=v_{i}$

NEGATIVE CLIPPER
A-ve clipper is one which removes all-the -ne cycle of the input voltage

(a) input signal

(b) circuit diag.

(C) output sign.

* During the the hay yer the diode is R.B.and ads as an open circuit. In this case circuit behaves as an potential divider neth V_{0} as

$$
\begin{aligned}
& V_{0}=\frac{R_{L}}{R+R_{2}} V_{i} \\
& R_{L} \gg \\
& \therefore V_{0}=V_{i}
\end{aligned}
$$

* During the -ne half cycle, the diode is $A \cdot B$. and action a short circuit and hence voltage across R_{L} is zero i.e. outport is zero in this case.

BIASED CLIPPER
A leiased clipper is one which removes a sural portion of the positive or negative half cycle of the signal voltage.

(b) Ckt diag
 (c) of p signal

* During tire hive cycle the diode is FB. if the voltage exceeds the battery voltage $+V$ Under this condna diode acts as a short - circuit and of p voltage remains equal to $+V$. But if the ip voltage is less than $\rightarrow V$, the diode is $R \cdot B$. and acts ans an' open circuit. Therefore most of the input voltage appears. across the output
* During ne half yule, the diode is R.B. Therefore. almost entire we half cycle appears across the load.
\rightarrow If it is desired to remove the portion of -ne halfcycle, the polarities of diodes or leatteries are revered. such a ckt is Called leased -ne clipper.

COMBINATION CLIPPER.
A combination crupper is a combination of leased the and -ie clippers and removes a portion of both. tue and we hoff cycle of input voltages.

b) Alrciest dang.
(c) of p signal

* During the half cycle, when the input voltage is greater than $+V_{1}$, the diode D_{1} is forward luased and acts as short crt. and D_{2} luring R.B. acts as open circuit. Therefore a voltage V, appears across the load.
* During -re half cycle, the ip voltage is greater than - V_{2}, the diode D_{2} is $A B$. and acts as short ck. While diode D_{1} is $R \cdot \beta$. and acts as open circuit. Therefore op voltage. remains $-V_{2}$.
\longrightarrow this clipping ckti gives square nave output if max. vale of clipping voltage is mech greater than clipping leeds.

DIODE CAMPERS
A. Circuit that introduces a dc level into an ac Signal is called clamping circuit or a clamper.

The the peak clamper shifts the the peak to zero level.

Let us assume that the diode is ideal and value of R_{L} and C are chosen such that $R_{L} G$ has large value. During the biff cycle of input signal, diode is $A B$. and acts as a sheet circient.
Capacitor C charges thorengh diode D and the ip voltage source.
As diode is real, the potential drop across diode is zero and across capacitor $\cong \mathrm{Vm}$
and ie steady state opp voltage $V_{0}=V_{i}-V_{m}$

If $v_{i}=v_{m} \sin \omega t$
$V_{0}=V_{m} \sin \omega t-V_{m}$

and at $t=\frac{T}{4}, \frac{5 T}{4} \ldots, V_{0}=V_{m}-V_{m} \quad$ cycle)
i.e. The peak is clamped to zero volt and the hay cycle in of p lies lifo $-v_{m}$ to $O V$.

* During the half cycle, the diode is $R \cdot B$ and acts as

$$
V_{0}=V_{i}-V_{m}=-V_{m} \sin \omega t-V_{m}
$$

$$
\text { and at } t=\frac{3 T}{4}, \frac{7 T}{4}, \ldots
$$

$$
V_{0}=-2 V_{m}
$$

Clearly, this clrciict introduces a $d c$ level - V_{m} to ac signal and the peak is clamped at OV, due to which this circuit is called the peale clamping circuit.
 cisumit

In this case the polarities of capacitor are reversed suice in this case the diode is A.B. and acts asa short circuit during -ne liny cycle
The op voltage, $v_{0}=v_{i}+v_{n}$ line. dc level of $+V_{m}$ is introduced in $a c$ level and rhepeab is shifted to zero volt.

Ques s.1. A germanium diode carrier a current of 1 mA at room temp. when a F.B. \& 0.15 V is applied. Estimate the reverse saturation current at from temp.
Solution: Applied forward lias voltage, $V=0.15 \mathrm{~V}$
Forward Current $=1 \mathrm{~mA}$

$$
\begin{aligned}
& V_{T}=26 \mathrm{mV}=0.026 V \\
& I=I_{0}\left(e^{v / \eta V_{T}}-1\right) \\
& \left.I_{0}=\frac{T}{\left(e^{V / \eta V_{T}}-1\right)}=\frac{1 \times 10^{-3}}{\left(e^{0.1510 .026}-1\right.}\right) \\
& I_{0}=3.12 \times 10^{-6} \mathrm{~A}=3.12 \mu \mathrm{~A}
\end{aligned}
$$

Quest. A silicon diode has reverse saturation current of 2.5 uA at 300 k . Find forward voltage for a forward current of 10 mA .
Solution:-

$$
\begin{aligned}
& I=I_{0}\left(e^{v / n V_{T}}-1\right) \\
& \begin{aligned}
e^{v / n V_{T}} & =\frac{0.01}{2.5 \times 10^{-6}}+1 \\
& =4 \times 10^{3}+1=4001 \\
\frac{V}{\eta V_{T}} & =\log _{e} 4001 \\
V & =\eta \times V_{T} \times \log e 4001 \\
& =2 \times 0.026 \times \log e 4001 \\
& =0.43 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

$$
(\eta=2 \text { for } \mathrm{Si}
$$

$$
\left.V_{T} \text { at } 300 \mathrm{~K}=26 \mathrm{mV}\right)
$$

Ques 3. What is the ripple 2 V on average of 50 V .
RMS value of $A C$ component, V rems $=2 V$
AVg. value of of p voltage, $V d c=50 \mathrm{~V}$

$$
\begin{aligned}
\text { Ripple factor } \gamma & =\frac{V_{\text {rms }}}{V_{d c}} \\
\gamma & =\frac{2}{50}=0.04 \text { Ans. }
\end{aligned}
$$

Quins 4. A half wave rectifier is used to supply 10 v do to a resistive load of 400Ω. If the crystal diode has a forward ensistance of 20Ω, determine the value of ac voltage Supplied to the circient.
sol

$$
\begin{aligned}
V_{\text {smax }} & =V_{d c} \times \pi\left\{1+\frac{R_{E}}{R_{L}}\right\} \\
& =10 \times \pi\left\{1+\frac{20}{400}\right\} \\
& =33 \mathrm{~V} .
\end{aligned}
$$

RMS value of ac voltage applied to the circuit

$$
V_{s}=\frac{V_{s \text { max }}}{\sqrt{2}}=\frac{33}{\sqrt{2}}=23.3 \mathrm{~V} \text { Ans }
$$

Ques 5. The load resistance of a centre-tapped full wave rectifier is 500Ω and the recessayy voltage is $60 \sin (100 \pi t)$. Calculate
(i) peak, avg. and rims value of current
(II) Supple factor (III) η of the rectifier.

Each diode has an idealised I-1 chat. Laving slope corresponding to a resistance of 50Ω.
sol

$$
\begin{gathered}
V_{\text {sax }}=60 \mathrm{~V} \\
R_{F}=50 \Omega \\
R_{L}=500 \Omega
\end{gathered}
$$

(i)

$$
\begin{aligned}
& \text { Peak current, } I_{\text {max }}=\frac{V_{S \text { max }}}{R_{L}+R_{F}} \\
& =\frac{60}{500+50}=0.109 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
\text { Average current, } I_{d c}=\frac{2 I_{\max }}{\pi} & =\frac{2 \times 0.109}{\pi} \\
& =0.0695 \mathrm{~A} .
\end{aligned}
$$

$$
\text { Isms }=\frac{I_{\text {max }}}{\sqrt{2}}=\frac{0.109}{\sqrt{2}}=0.077 \mathrm{~A}
$$

(ii)

$$
\gamma=\sqrt{\left(\frac{I_{\text {rms }}}{I_{d c}}\right)^{2}-1}=\sqrt{\left(\frac{0.077}{0.0695}\right)^{2}-1}
$$

(iii)

$$
\begin{aligned}
& \eta=\frac{0.812}{1+\frac{R_{R}}{R_{L}}} \times 100=\frac{0.812 \times 100}{1+\frac{50}{500}} \\
& \eta=73.82 \%
\end{aligned}
$$

Ques 5. In a bridge rectifier circuit the peak values of secondary voltage is $240 \sqrt{2} V$ and freq is 50 Hz . Determine no load $d c$ voltage, $P I V$ and $\$ / P$ freq.
Solution $\quad V_{s \text { max }}=240 \sqrt{2} \mathrm{~V}$

$$
\begin{aligned}
\text { no -load dc voltage } & =\frac{2 V_{\text {sax }}}{\pi} \\
& =\frac{2 \times 240 \sqrt{2}}{\pi} \\
& =216 \mathrm{~V}
\end{aligned}
$$

PIV rating of diodes, $\begin{aligned} \text { DIV }=V_{\text {smax }} & =240 \sqrt{2} \\ & =339.4 V\end{aligned}$

$$
\text { output freq., } \begin{aligned}
\text { fout } & =2 \text { fin } \\
& =2 \times 50 \\
& =100 \mathrm{~Hz} .
\end{aligned}
$$

Rues 6. Determine the rating op transformer to deliver a 100 W of $d c$ power to a fuse Woad under fuel wave

Solution:

$$
\begin{aligned}
& n: \begin{array}{l}
\text { Transformer rating }=\frac{P_{d C}}{T U F} \\
\\
=\frac{100}{0.692}=144.5 \mathrm{VA} \\
\text { (in case of } \\
\text { centre- tap } \\
\text { transformer) }
\end{array} \\
& \begin{array}{l}
\text { Transformer } \\
\text { rating }
\end{array}=\frac{100}{0.812}=125 \mathrm{VA}\left(\begin{array}{c}
\text { in case of bridge } \\
\text { rectifier) }
\end{array}\right.
\end{aligned}
$$

Ques 7. A full wave Lesidge rectifier use $R_{L}=2 \mathrm{k} \Omega$, each diode is to piave forward resistance $R_{F}=2 \Omega$ and $R r=\infty$. A sinusoidal voltage having peak amplitude of 20 V is applied. Find
(i) Peak, $d c$ and rms value of load current
(ii) $d c$ and rms output voltages
(iii) $d c$ of p power
(iv) ac i/p power
(v) efficiency.

Solution:- $V_{\text {smax }}=20 \mathrm{~V}$

$$
\begin{aligned}
& R_{F}=2 \Omega \\
& R_{r}=\infty \\
& R_{L}=2 \mathrm{k} \Omega=2000 \Omega
\end{aligned}
$$

(i)

$$
\begin{aligned}
I_{\text {max }}=\frac{V_{\text {max }}}{2 R_{F}+R_{F}} & =\frac{20}{2 \times 2+2000} \\
& =9.98 \mathrm{~mA} \\
I_{d C}=\frac{2 I_{\text {max }}}{\pi} & =\frac{2 \times 9.98}{\pi}=6.35 \mathrm{~mA} \\
I_{\text {mm }}= & \frac{I_{\text {max }}}{\sqrt{2}}=\frac{9.98}{\sqrt{2}}=7.06 \mathrm{~mA}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V_{d C} & =\frac{2}{\pi} I_{\max } R_{L} \\
& =\frac{2}{\pi} \times 0.00998 \times 2000 \\
& =12.7 \mathrm{~V} \\
V_{\text {rms }} & =\frac{I_{\max }}{\sqrt{2}} \times R_{L} \\
& =\frac{0.00998}{\sqrt{2}} \times 2000 \\
& =141 \mathrm{~V}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P_{d c} & =I^{2} d c R_{L} \\
& =\left(\frac{6.35}{1000}\right)^{2} \times 2000 \\
& =80.65 \mathrm{~mW}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
P_{a c} & =I^{2} \text { rms }\left(R_{L}+2 R_{F}\right) \\
& =\left(\frac{7.06}{1,000}\right)^{2} \times(20.00+4) \\
& =99.89 \mathrm{~mW}
\end{aligned}
$$

(v.) $\quad \eta=\frac{P_{d c}}{P_{a c}} \times 100=\frac{80.65}{99.89} \times 100=80.74 \%$

Queues A zener diode has specification e $V_{z}=5.2 \mathrm{~V}$ and $\left(P_{z}\right)_{m}=260 \mathrm{~mW}$ Assume $R_{F}=0$. Find the max. allowed Current when zener diode acts as a Regulator.

$$
\begin{aligned}
& P_{Z M}=260 \mathrm{~mW} \\
& V_{Z}=5.2 \mathrm{~V} \\
& R_{Z}=0 \\
& I_{Z M}=\frac{P_{Z M}}{V_{Z}}=\frac{260 \times 10^{-3}}{5.2} \\
& I_{Z M}=50 \mathrm{~mA} \text { Ans. }
\end{aligned}
$$

Ques. A Fencer diode regulator has to supply a load current that changes from $0-200 \mathrm{~mA}$ at 10 V . Input voltage ranges from $15-20 \mathrm{~V}$. Finer diode stabilizes at a min. Current of 10 mA . Find the series resistance.

$$
\begin{aligned}
& I_{L}=0-200 \mathrm{~mA} \\
& V_{Z}=10 \mathrm{~V} \\
& \left(I_{z}\right)_{\mathrm{min}}=10 \mathrm{~mA}
\end{aligned}
$$

If I_{F} is min. (I_{*}) min, then load current will be max (IL) max and $i \% p$ voltage neil be (Vim) men .
\therefore Total current through R_{s}

$$
\begin{aligned}
I_{S} & =\left(I_{z}\right)_{\min }+\left(I_{L}\right)_{\text {max }} \\
& =(10+200) m A \\
& =210 \mathrm{~mA}
\end{aligned}
$$

Voltage across $R_{s}, V_{s}=\left(V_{i n}\right)_{\min }-V_{z}$

$$
\begin{aligned}
& =(15-10) \mathrm{V}=5 \mathrm{~V} \\
& R_{S}=\frac{V_{S}}{I_{S}}=\frac{5}{210}=23.85
\end{aligned}
$$

Ques. For the circuit shown in fig., find the max and min. Values of zener current.

Solution:-
(i) For min. Current, input voltage should le min.

$$
\begin{aligned}
& V_{i n}=80 \mathrm{~V} \\
& V_{z}=50 \mathrm{~V}
\end{aligned}
$$

from KVL, $\left(V_{\text {in }}\right)_{\text {min }}=V_{s}+V_{z}$

$$
\begin{aligned}
& V_{S}=\left(V_{\text {in }}\right)_{\text {min }}-V_{z} \\
&=80-50=30 \mathrm{~V} \\
& I_{S}=\frac{V_{S}}{R_{S}}=\frac{30}{5 \times 10^{3}}=6 \mathrm{~mA} \\
& \therefore I_{L}= \frac{V_{L} \text { or } V_{z}}{R_{L}}=\frac{50}{10}=5 \mathrm{~mA} \\
& I_{S}=I_{Z}+I_{L}
\end{aligned}
$$

Min value of $I_{z}=I_{s}-I_{L}$

$$
=6-5=1 \mathrm{~mA}
$$

(ii) for max. value of zener current

$$
\begin{aligned}
& V_{\text {in }}=120 \mathrm{~V} \\
& V_{z}=50 \mathrm{~V} \\
& \left(V_{\text {in }}\right)_{\text {max }}=V_{s}+V_{z} \\
& V_{s}=120-50 \\
& V_{s}=70 \mathrm{~V} \\
& I_{s}=\frac{V_{s}}{R_{s}} \\
& I_{s}=\frac{70}{5 \times 10^{3}}=14 \mathrm{~mA}
\end{aligned}
$$

Since $I_{L}=5 \mathrm{~mA}$

$$
\begin{aligned}
\left(I_{E \text { max }}\right. & =I_{S}-I_{L} \\
& =14-5=9 m A .
\end{aligned}
$$

Ques. A varactor diode with a linearly graded june" has a capacitance of 100 UF when no liar is applied to the diode. Determine the jim capacitance for the si diode when reverse lias of 8 V is applied to the diode.
Sol :-

$$
\begin{aligned}
& C_{T}(0)=100 \mathrm{pF} \\
& V_{K}=0.7 \mathrm{~V} \\
& V_{R}=8 \mathrm{~V} \\
& n=1 / 3 \\
& C_{T}(V)=\frac{C_{T}(0)}{\left(1+\frac{V_{R}}{V_{K}}\right)^{n}}=\frac{100}{\left(1+\frac{8}{0.7}\right)^{1 / 3}}=43.18 \mathrm{pF}
\end{aligned}
$$

Ques. A varactor diode has a capacitance of 15 pF at 5 V reverse lias voltage. Determine the capacitance of the diode lias voltage is increased to 20 V

Sol": Given,

$$
c_{1}=15 \mu \mathrm{~F}
$$

$$
\begin{aligned}
& V_{1}=5 \mathrm{~V} \\
& V_{2}=20 \mathrm{~V} \\
& C \propto \frac{1}{V^{1 / 2}} \\
& \therefore \frac{C_{1}}{C_{2}}=\sqrt{\frac{V_{2}}{V_{1}}} \\
& \Rightarrow C_{2}=\sqrt{\frac{V_{1}}{V_{2}}} \cdot C_{1} \\
&=\sqrt{\frac{5}{20}} \times 15 \\
& C_{2}=7.5 p F
\end{aligned}
$$

Ques. If the Fencer diode of the fig. is operating in the breakdown region? If yes, calculate
(i) I_{S} (II) I_{L} and (III) I_{z}

Thevenin equivalent circuit.

Yes, the zener diode of abase fig. is opereatid in breakdown region.
(i) cond" for breakdown opereation $V_{T H}>V_{L}$

$$
V_{T H}=\left(\frac{R_{L}}{R_{L}+R_{S}}\right) \cdot V_{\text {in }}=14.2 \mathrm{~V}
$$

Sine Yhevenin voltage is greater than Fencer Voltage, The Fever diode is opereating in breakdown region

$$
\begin{aligned}
I_{S} & =\frac{V_{i n}-V_{z}}{R_{S}} \\
& =\frac{18-10}{270}=29.6 \mathrm{~mA}
\end{aligned}
$$

(ii)

$$
\text { Load current } \begin{aligned}
I_{L} & =\frac{\left(V_{L}=V_{z}\right)}{R_{L}} \\
& =\frac{10}{10^{3}}=10 \mathrm{~mA}
\end{aligned}
$$

(iii)

$$
\text { Fever current } \begin{aligned}
I_{R} & =I_{S}-I_{L} \\
& =(29.6-10)_{\mathrm{mA}} \\
& =19.6 \mathrm{~mA}
\end{aligned}
$$

Ques. A Fence diode rated $10 \mathrm{~V}, 32 \mathrm{~mA}$ can le considered ideal. Calculate the range of R_{L} (load) and I_{h} for V_{L} to maintained constant. What is max. Wattage consumed by diode.

$$
R s=19 k \Omega
$$

$$
\begin{aligned}
R_{L \text { min }} & =\frac{R_{S} V_{z}}{V_{i}-V_{z}} \\
& =\frac{1 \times 10^{3} \times 10}{50-10}=\frac{10 \mathrm{Ks} 2}{40}=25052
\end{aligned}
$$

The voltage across the resistor R

$$
\begin{aligned}
V_{R} & =V_{i}-V_{z} \\
& =(50-10) V=40 \mathrm{~V}
\end{aligned}
$$

Thus $I_{R}=\frac{V_{R}}{R_{S}}=\frac{40}{1 \times 10^{3}}=40 \mathrm{~mA}$.

The min lived of I_{L}

$$
\begin{aligned}
I_{L \text { min }} & =I_{R}-I_{z m} \\
& =40 m A-32 m A \\
& =8 m A .
\end{aligned}
$$

Now, determining the max. value of R_{L}.

$$
R_{L \text { max }}=\frac{V_{z}}{I_{L \min }}=\frac{10 \mathrm{~V}}{8 \mathrm{~mA}}=1.25 \mathrm{kS}
$$

The max. wattage rating of the diode

$$
\begin{aligned}
P_{z \max }=V_{z} I_{E m} & =10 \times 32 \times 10^{-3} \\
& =320 \mathrm{~mW}
\end{aligned}
$$

Ques. What Value of series resistance is required when three $10 \mathrm{~N}, 10 \mathrm{~V}, 1000 \mathrm{~mA}$ zens diodes are connected ii series to Obtain a 30 V regulated output from a 45 V input supply.

$$
\begin{aligned}
& V_{i n}=45 \mathrm{~V} \\
& V_{0}=30 \mathrm{~V} \\
& I_{z}=1000 \mathrm{~mA}
\end{aligned}
$$

To obtain 30 V of P, all thrill diodes are connected in series reversed biased. Let output is open ie. $I_{z}=I_{S}\left(\because I_{L}=0\right)$
\therefore From kirchoft's voltage law,

$$
\begin{aligned}
V_{\text {in }} & =I_{S} R_{S}+V_{D_{1}}+V_{D 2}+V_{D_{3}} \\
R_{S} & =\frac{V_{i n}-\left(V_{D_{1}}+V_{D 2}+V_{D_{3}}\right)}{I_{F}\left(=I_{S}\right)} \\
& =\frac{45-30}{1000 \times 10^{-3}} \\
& =155
\end{aligned}
$$

* SPECIAL DIODES

ZENER DIODE
Normal p-n june n diode Can easily opereate in FB. and also in R.B. If the reverse voltage exceeds the breakdonen voltage, large current flows through the finn", which may destroy the diode. the zens diode may be designed to operate in breakdown region the valiagh across tenet diode is almost constant Onir most of the breakdown region.

* Zener diode normally remains safe as long as current doesnot. exceeds the max -permissible value Izn If current is greater than $I_{Z M}$, the diode may be destroyed

* It is found that V-I curve is somilar to that of a normal diode in the forward region. A very small current flows in the leakeage region. As reverse voltage reacher the breakdown voltage V_{k}, break doyen occurs.
Power dissipation through zener diode

$$
P_{z}=V_{z} I_{z}
$$

and $I_{Z M}=\frac{P_{Z M}}{V_{Z}}$
where $I_{Z M}=\max \cdot$ rated Fencer current
$P_{Z M}=$ Power rating and $V_{F}=$ Fever voltage.
there are two mechanisms for large reverse current in levaldown region:-
(i) Avalanche Brakdown
(II) Fencer Breakdown.

Liner doodle as Voltage Regulator
Zenu diode under R.B. maintains. a constant voltage across itself Even if current through it changes. This property of Fence diode is exploited to design a voltage regulator circuit for maintaining the output ventage of power supply constant
Fig. Shows the circuit of voltage regulator. The zener diode is R.S. so that it cam operate ii lereakdowin region and maintain the load voltage constant (equal to fencer voltage). Any Variation of input veitage or load resistance Cannot distarb the load voltage. A series resistor R_{s} is nieces ally to limit the Reverse current through Fencer diode to a safer value. Rs absorbs the voltage fluctuations so as to maintain the load voltage, constant.
The current through series resistance R_{s} is

$$
I_{S}=\frac{V_{i n}-V_{z}}{R_{S}}
$$

applying KCL ,

$$
I_{S}=I_{z}+I_{L}
$$

Load current $I_{L}=\frac{V_{L}}{R_{L}}=\frac{V_{z}}{R_{L}}$

$$
\left(V_{L}=V_{Z}\right)
$$

zener voltage Regulator circuit.
\rightarrow when Vin increases, I_{s} increases and at the same time I_{z} also increases without much chang in zener voltage. Hence load veltage $\left(V_{L}=V_{z}\right)$ remains constant
\rightarrow On the other hand, R_{i} dicieasis li keeping input Voltage $V_{\text {in }}$ constant and load current I_{L} ni creases.
\rightarrow Suricl I_{s} remains constant, I_{z} wire lee dicicased. Any. Small clauge in I_{z} will not affect.zener Voltiöge so, $0 / \mathrm{p}$ Voltage V_{L}^{\prime} remains constant.

Varactor diode
It is a two terminal $p-n$ junco diode with small doping At the p-n fun ${ }^{n}$ depletion layer is formed which acts like a dielectric in a capacitor, having a capacitance of the order of some picD-Farad (PF) known as fiend barrie or transition capacitance. (Paid N regions of the diode behaving like plates of capacitor)
when diode is R.B., depletion width niereases with the reverse voltage and its capacitance becomes sinaller. Spice thickness of depletion region varies with applied-beas voltage, capacitance of the chide can be made to vary. It is knower as Varactor (Variable + reactor), Varicap etc.

(b) circuit symbol.
(a) R.B. $p-n$ juncr with depletion layer
"capacitance is diversely proportional to the square root of.
external applied voltage" external applied voltage"

$$
C_{T}(V)=\frac{k}{\left(V_{T}+V_{R}\right)^{n}}=\frac{C_{T}(0)}{\left(1+\frac{V_{R}}{V_{K}}\right)^{n}}
$$

Where k is constant depends upon senviconductor material V_{T} is vert equivalent of temp. and V_{R} is reverse applied voltage
$n=\frac{1}{2}$ for alloyed fin ${ }^{n}$ and $n=1 / 3$ for diffused fin n $C_{T}(0)$ is capacitance at Zero Veitage V_{K} is potential barrier.

The above fig shows the variation of capacitance nite reverse Voltage. At OV, depeition region is small and hence capacitance is large $(\approx 600 \mathrm{PF})$ Capacitance decreases neth inciease in reverse voltage and it liecomes approx 30 pF at reverse Voltage of 15 V .

* Varactor diodes are used in FM reciever, TV reciever and untuning of LC parallel resonant circuit in microwave freq. multiplier, parametric amplifier, hand pass filter.
$\xrightarrow{\text { LIGHT EMITTING OISE }} \longrightarrow_{*}^{\text {(LED) }}$
The LED emits visible light of a wavelength when a current is passed through the forward leased p-n finn diode. In this passed through current celections) are converted into light (Visible or invisible)

-LED and lL circuit symbol.
A free electron is the conduction lean recombines which a fie hole wi the valance hand by crossing the blearier at the P-N fine". In the process of recombination, electromagnets radiation of energy equals to the lead gap of the semiconducting material, is released.
some senvicondrecting materials like Gats, GaP, Ga As P. etc. have Band gap energy hi the range of about $1.5-3.0 \mathrm{eV}$ Which provides radiations ni the visible / infrared region. Frei. of emitted radiation is :-

$$
v=\frac{\Delta E g}{h}
$$

Where $h=$ planck's constant $=6.63 \times 10^{-34} \mathrm{~s}$

* LED'S are neidely used in small indicator, warning lights and i i alphanumeric display devices (like Calculators etc.)
* LEDS with livisible radiation may find application in remote control devices, burglar alarm system etc.
* operation of $L \equiv D$ ceases, if it is $R \cdot B$. and eventually LED may get destrayed.

Seven-Segment Display
It has seven LED's (Alto) . Each LED is called a segment. Here external resistor are used to control the current to safe levels.
(a) seven segment display

- (b) Schamatic Diag.

Typical value of forward Voltage for a TTL 222 (green) varies from 1.8 V to 3 V for a current of 25 mA .

SCHOTTKY. BARRIER ALOE

* ${ }^{*}$
*

A diode consisting of a metal semiconductor CSchotthy barrier) is shonen in fig. nehich has V-I char. curie Similar to ordinary PN-diode. It is unipolar device loscaose because it has only electrons as majority carriers on lo th sides of the finch.

* A schattky diode differs from the $P-N$ fiencndiode in that the diode forward voltage is lower ($0.20 \mathrm{~V}-0.25 \mathrm{~V}$) for a commonly used material.
* In this diddle no depletion layer is formed near the finn because of unipolar carriers (elections). As a result no charge stored when it is opereated in forward lias.
* Schotthy diode offers a lower resistance in A.B.due to large contact area bow the metal and simicandictor when $F \cdot B$. is applied electrons on the N-side gain Sufficient enesgy so that it crosses the blearier and enter into the metal region. These high energy election are known as hot carrels and diode is called as hot carrier diode.
* These diodes can rectify the signals of freq up to 300 MHz . Most important application of Schottty diodes is in digital computers, where Computer speed depends on how fast its diodes and tranustoes can switch ON 8 OFF

* Schottky diode and its circuit symbol

TUNNEL DIODE
It is also known as Esakidiode. It is a P_{-N} fincndiode with extremely high eloping (1 part in 10^{3}) on each side of the given. The $P-N$ find ${ }^{n}$ diode with nearly kero breakdown voltage is known as tunnel diode because of very this depletion layer, elections can tunnel across the gionc" in the FB. voltage.

* With increasing forward bias, the tunnel effect contribution leicomes small, as a result --ne resistance region is produced on the diode characteristics. Further increase in the lias voltage, producing $V-I$ cures like that q an ordinary $P-N j i n c n$. Tunneling occurs in both forward and reverse directions near to zero Voltage. ($v \neq 0$)

(a.) Sirwit symbol
 tunnel diode.
* 'So tunnel diode and photorline photodiode from book'
"Do Piesewir linear model from Book'

